論文の概要: Self Supervised Low Dose Computed Tomography Image Denoising Using
Invertible Network Exploiting Inter Slice Congruence
- arxiv url: http://arxiv.org/abs/2211.01618v1
- Date: Thu, 3 Nov 2022 07:16:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-04 14:20:50.495445
- Title: Self Supervised Low Dose Computed Tomography Image Denoising Using
Invertible Network Exploiting Inter Slice Congruence
- Title(参考訳): Invertible Network Exploiting Inter Slice Congruenceを用いた低線量CT画像の自己監督
- Authors: Sutanu Bera, Prabir Kumar Biswas
- Abstract要約: LDCT画像とNDCT画像のペア化の必要性を軽減するために, 自己監督型低用量CTデノベーション法を提案する。
我々は、ノイズスライスと隣接する2つのノイズスライスの平均の2乗距離を最小化するために、可逆ニューラルネットワークを訓練した。
- 参考スコア(独自算出の注目度): 20.965610734723636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The resurgence of deep neural networks has created an alternative pathway for
low-dose computed tomography denoising by learning a nonlinear transformation
function between low-dose CT (LDCT) and normal-dose CT (NDCT) image pairs.
However, those paired LDCT and NDCT images are rarely available in the clinical
environment, making deep neural network deployment infeasible. This study
proposes a novel method for self-supervised low-dose CT denoising to alleviate
the requirement of paired LDCT and NDCT images. Specifically, we have trained
an invertible neural network to minimize the pixel-based mean square distance
between a noisy slice and the average of its two immediate adjacent noisy
slices. We have shown the aforementioned is similar to training a neural
network to minimize the distance between clean NDCT and noisy LDCT image pairs.
Again, during the reverse mapping of the invertible network, the output image
is mapped to the original input image, similar to cycle consistency loss.
Finally, the trained invertible network's forward mapping is used for denoising
LDCT images. Extensive experiments on two publicly available datasets showed
that our method performs favourably against other existing unsupervised
methods.
- Abstract(参考訳): ディープニューラルネットワークの復活は、低用量CT(LDCT)と正常用量CT(NDCT)画像ペア間の非線形変換関数を学習することにより、低用量CTの代替経路を生み出した。
しかし、LDCTとNDCTのペア画像は臨床環境ではほとんど利用できないため、ディープニューラルネットワークの展開は不可能である。
LDCT画像とNDCT画像のペア化の必要性を軽減するために, 自己監督型低用量CTデノベーション法を提案する。
具体的には、ノイズスライスと隣接した2つのノイズスライスの平均との間のピクセルベース平均平方距離を最小化するために、可逆ニューラルネットワークを訓練した。
以上のことは、ニューラルネットワークをトレーニングして、クリーンなNDCTとノイズの多いLDCT画像ペア間の距離を最小化するのと似ている。
また、インバータブルネットワークの逆マッピングの間、出力画像は、サイクル一貫性損失と同様に、元の入力画像にマッピングされる。
最後に、トレーニングされた非可逆ネットワークの前方マッピングを用いてLDCT画像のノイズ化を行う。
2つの公開データセットに関する広範囲な実験により、既存の教師なしメソッドに対して好適に動作できることが判明した。
関連論文リスト
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
クロスモーダル逆ニューラルレンダリングによる神経外科手術における術中3D/2Dレジストレーションのための新しいアプローチを提案する。
本手法では,暗黙の神経表現を2つの構成要素に分離し,術前および術中における解剖学的構造について検討した。
臨床症例の振り返りデータを用いて本法の有効性を検証し,現在の登録基準を満たした状態での最先端の検査成績を示した。
論文 参考訳(メタデータ) (2024-09-18T13:40:59Z) - WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
我々は, NDCTデータのみを用いて, WIA-LD2NDと呼ばれる新しい自己監督型CT画像復調法を提案する。
WIA-LD2ND は Wavelet-based Image Alignment (WIA) と Frequency-Aware Multi-scale Loss (FAM) の2つのモジュールから構成される。
論文 参考訳(メタデータ) (2024-03-18T11:20:11Z) - Low-Dose CT Image Reconstruction by Fine-Tuning a UNet Pretrained for
Gaussian Denoising for the Downstream Task of Image Enhancement [3.7960472831772765]
Computed Tomography (CT) は医用画像モダリティとして広く用いられているが,低用量CTデータからの再構成は難しい課題である。
本稿では,LDCT画像の再構成を行うための,より複雑な2段階の手法を提案する。
提案手法は,LoDoPaB-CTチャレンジにおける共有トップランキングと,SSIMメトリックに対する第1位を実現する。
論文 参考訳(メタデータ) (2024-03-06T08:51:09Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - QS-ADN: Quasi-Supervised Artifact Disentanglement Network for Low-Dose
CT Image Denoising by Local Similarity Among Unpaired Data [10.745277107045949]
本稿では,LDCT画像復調のためのADNの強化を目的とした,準教師付き学習と呼ばれる新しい学習モードを提案する。
提案手法は、教師付き学習モードやセミ教師付き学習モードとは(互換性はあるが)異なるものであり、既存のネットワークを変更することで容易に実装できる。
実験結果から,本手法は騒音抑制法や文脈忠実度の観点から,最先端の手法と競合することが示された。
論文 参考訳(メタデータ) (2023-02-08T07:19:13Z) - Patch-wise Deep Metric Learning for Unsupervised Low-Dose CT Denoising [33.706959549595496]
パッチワイド・ディープ・メトリック・ラーニングを用いた低用量CT再構成のための新しい教師なし学習手法を提案する。
鍵となる考え方は、同じ解剖学的構造を共有するイメージパッチの正のペアを引いて、互いに同じノイズレベルを持つ負のペアをプッシュすることで、埋め込み空間を学習することである。
実験結果から,CT数シフトを伴わない高品質な復号化画像の作成において,深度検定学習が重要な役割を担っていることが確認された。
論文 参考訳(メタデータ) (2022-07-06T00:58:11Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - Cascaded Convolutional Neural Networks with Perceptual Loss for Low Dose
CT Denoising [0.0]
低線量CT(low Dose CT Denoising)研究は、患者への放射線曝露のリスクを低減することを目的としている。
平均二乗誤差(MSE)を用いた最近のアプローチでは、画像の低コントラスト領域における微細構造の詳細が失われる傾向にある。
提案手法は,画像の低コントラスト領域における細かな構造的細部をより効果的に再構築する。
論文 参考訳(メタデータ) (2020-06-26T00:35:26Z) - Probabilistic self-learning framework for Low-dose CT Denoising [1.8734449181723827]
被曝の減少は、被曝量を減少させ、したがって放射線関連のリスクを減少させる。
低用量CT(LDCT)を診断するためにニューラルネットワークをトレーニングするために、改良されたディープラーニングを使用することができる
論文 参考訳(メタデータ) (2020-05-30T17:47:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。