論文の概要: MALUNet: A Multi-Attention and Light-weight UNet for Skin Lesion
Segmentation
- arxiv url: http://arxiv.org/abs/2211.01784v1
- Date: Thu, 3 Nov 2022 13:19:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-04 14:01:57.433995
- Title: MALUNet: A Multi-Attention and Light-weight UNet for Skin Lesion
Segmentation
- Title(参考訳): MALUNet:皮膚病変セグメンテーションのためのマルチアテンションおよび軽量UNet
- Authors: Jiacheng Ruan, Suncheng Xiang, Mingye Xie, Ting Liu and Yuzhuo Fu
- Abstract要約: そこで本研究では,皮膚病変のセグメンテーションにおいて,パラメータと計算複雑性の最小コストで競合性能を実現する軽量モデルを提案する。
我々は、4つのモジュールをU字型アーキテクチャと組み合わせ、MALUNetと呼ばれる軽量な医用画像分割モデルを得る。
UNetと比較して、我々のモデルはmIoUとDSCのメトリクスをそれぞれ2.39%、1.49%改善し、パラメータ数と計算複雑性の44倍と166倍削減した。
- 参考スコア(独自算出の注目度): 13.456935850832565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, some pioneering works have preferred applying more complex modules
to improve segmentation performances. However, it is not friendly for actual
clinical environments due to limited computing resources. To address this
challenge, we propose a light-weight model to achieve competitive performances
for skin lesion segmentation at the lowest cost of parameters and computational
complexity so far. Briefly, we propose four modules: (1) DGA consists of
dilated convolution and gated attention mechanisms to extract global and local
feature information; (2) IEA, which is based on external attention to
characterize the overall datasets and enhance the connection between samples;
(3) CAB is composed of 1D convolution and fully connected layers to perform a
global and local fusion of multi-stage features to generate attention maps at
channel axis; (4) SAB, which operates on multi-stage features by a shared 2D
convolution to generate attention maps at spatial axis. We combine four modules
with our U-shape architecture and obtain a light-weight medical image
segmentation model dubbed as MALUNet. Compared with UNet, our model improves
the mIoU and DSC metrics by 2.39% and 1.49%, respectively, with a 44x and 166x
reduction in the number of parameters and computational complexity. In
addition, we conduct comparison experiments on two skin lesion segmentation
datasets (ISIC2017 and ISIC2018). Experimental results show that our model
achieves state-of-the-art in balancing the number of parameters, computational
complexity and segmentation performances. Code is available at
https://github.com/JCruan519/MALUNet.
- Abstract(参考訳): 近年、いくつかの先駆的な作品は、セグメント化性能を改善するためにより複雑なモジュールを適用することを好んでいる。
しかし,コンピュータ資源が限られているため,実際の臨床環境には適していない。
この課題に対処するため,本論文では,皮膚病変セグメンテーションの競合性能をパラメータと計算複雑性の最小コストで達成する軽量モデルを提案する。
Briefly, we propose four modules: (1) DGA consists of dilated convolution and gated attention mechanisms to extract global and local feature information; (2) IEA, which is based on external attention to characterize the overall datasets and enhance the connection between samples; (3) CAB is composed of 1D convolution and fully connected layers to perform a global and local fusion of multi-stage features to generate attention maps at channel axis; (4) SAB, which operates on multi-stage features by a shared 2D convolution to generate attention maps at spatial axis.
我々は、4つのモジュールをU字型アーキテクチャと組み合わせ、MALUNetと呼ばれる軽量な医用画像分割モデルを得る。
unetと比較して,miouとdscの指標をそれぞれ2.39%,1.49%改善し,パラメータ数と計算複雑性を44倍,166倍削減した。
さらに,2つの皮膚病変セグメンテーションデータセット(ISIC2017とISIC2018)の比較実験を行った。
実験結果から,本モデルはパラメータ数,計算複雑性,セグメンテーション性能のバランスをとる上での最先端性を実現していることがわかった。
コードはhttps://github.com/JCruan519/MALUNetで入手できる。
関連論文リスト
- S3TU-Net: Structured Convolution and Superpixel Transformer for Lung Nodule Segmentation [5.2752693301728355]
マルチ次元空間コネクタとスーパーピクセルベースの視覚変換器を統合したセグメンテーションモデルS3TU-Netを提案する。
S3TU-NetはマルチビューCNN-Transformerハイブリッドアーキテクチャ上に構築されており、スーパーピクセルアルゴリズム、構造化重み付け、空間シフト技術が組み込まれている。
LIDC-IDRIデータセットの実験結果は、S3TU-Netがそれぞれ89.04%、90.73%、90.70%のDSC、精度、IoUを達成したことを示している。
論文 参考訳(メタデータ) (2024-11-19T15:00:18Z) - EM-Net: Efficient Channel and Frequency Learning with Mamba for 3D Medical Image Segmentation [3.6813810514531085]
我々は,EM-Netと呼ばれる新しい3次元医用画像セグメンテーションモデルを紹介し,その成功に触発されて,新しいマンバベースの3次元医用画像セグメンテーションモデルであるEM-Netを紹介した。
提案手法は,SOTAモデルのパラメータサイズをほぼ半分にし,訓練速度を2倍に向上させながら,より高精度なセグメンテーション精度を示すことを示す。
論文 参考訳(メタデータ) (2024-09-26T09:34:33Z) - GroupMamba: Parameter-Efficient and Accurate Group Visual State Space Model [66.35608254724566]
状態空間モデル(SSM)は、二次的複雑性を伴う長距離依存のモデリングにおいて効果的な性能を示した。
しかし、純粋なSSMベースのモデルは、コンピュータビジョンタスクにおける安定性と最適性能の達成に関連する課題に直面している。
本稿では,コンピュータビジョンのためのSSMベースのモデルをスケールする上での課題,特に大規模モデルの不安定性と非効率性について論じる。
論文 参考訳(メタデータ) (2024-07-18T17:59:58Z) - ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
SAM(Segment Anything Model)は、ポリープセグメンテーションに先例のないポテンシャルを導入している。
SAMのTransformerベースの構造は、グローバルおよび低周波情報を優先する。
CFAはトレーニング可能なCNNエンコーダブランチと凍結したViTエンコーダを統合し、ドメイン固有の知識の統合を可能にする。
論文 参考訳(メタデータ) (2024-06-30T14:55:32Z) - PMFSNet: Polarized Multi-scale Feature Self-attention Network For
Lightweight Medical Image Segmentation [6.134314911212846]
現在の最先端の医用画像分割法は精度を優先するが、計算要求の増大とより大きなモデルサイズを犠牲にすることも多い。
計算冗長性を避けつつグローバルな局所特徴処理のバランスをとる新しい医用画像分割モデルPMFSNetを提案する。
長期依存関係をキャプチャするために,アテンション機構に基づいたマルチスケール機能拡張モジュールであるPMFSブロックをプラグインとして組み込んでいる。
論文 参考訳(メタデータ) (2024-01-15T10:26:47Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
ポリープセグメンテーションのための障害対応動的ネットワーク(LDNet)を提案する。
従来のU字型エンコーダ・デコーダ構造であり、動的カーネル生成と更新スキームが組み込まれている。
この単純だが効果的なスキームは、我々のモデルに強力なセグメンテーション性能と一般化能力を与える。
論文 参考訳(メタデータ) (2023-01-12T09:53:57Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
本稿では,高画質なセグメンテーションマスクと,パラメータ,計算コスト,推論速度の両面での効率性を提供するUNETR++という3次元医用画像セグメンテーション手法を提案する。
我々の設計の核となるのは、空間的およびチャネル的な識別的特徴を効率的に学習する、新しい効率的な対注意ブロック(EPA)の導入である。
Synapse, BTCV, ACDC, BRaTs, Decathlon-Lungの5つのベンチマークで評価した結果, 効率と精度の両面で, コントリビューションの有効性が示された。
論文 参考訳(メタデータ) (2022-12-08T18:59:57Z) - UNet#: A UNet-like Redesigning Skip Connections for Medical Image
Segmentation [13.767615201220138]
シンボル#に類似した形状のUNet-sharp(UNet#)という,高密度スキップ接続とフルスケールスキップ接続を組み合わせた新しいネットワーク構造を提案する。
提案されたUNet#は、デコーダサブネットワークで異なるスケールの機能マップを集約し、詳細な詳細と大まかなセマンティクスをフルスケールから取得することができる。
論文 参考訳(メタデータ) (2022-05-24T03:40:48Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - PAENet: A Progressive Attention-Enhanced Network for 3D to 2D Retinal
Vessel Segmentation [0.0]
光コヒーレンス・トモグラフィー(OCTA)画像では3次元から2次元の網膜血管セグメンテーションは難しい問題である。
本稿では,多機能表現を抽出するアテンション機構に基づくプログレッシブ・アテンション・エンハンスメント・ネットワーク(PAENet)を提案する。
提案アルゴリズムは,従来の手法と比較して最先端性能を実現する。
論文 参考訳(メタデータ) (2021-08-26T10:27:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。