Dormant Neural Trojans
- URL: http://arxiv.org/abs/2211.01808v1
- Date: Wed, 2 Nov 2022 16:06:46 GMT
- Title: Dormant Neural Trojans
- Authors: Feisi Fu, Panagiota Kiourti, Wenchao Li
- Abstract summary: We present a novel methodology for neural network backdoor attacks.
Unlike existing training-time attacks where the Trojaned network would respond to the Trojan trigger after training, our approach inserts a Trojan that will remain dormant until it is activated.
- Score: 6.8722427980580445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel methodology for neural network backdoor attacks. Unlike
existing training-time attacks where the Trojaned network would respond to the
Trojan trigger after training, our approach inserts a Trojan that will remain
dormant until it is activated. The activation is realized through a specific
perturbation to the network's weight parameters only known to the attacker. Our
analysis and the experimental results demonstrate that dormant Trojaned
networks can effectively evade detection by state-of-the-art backdoor detection
methods.
Related papers
- Trojan Cleansing with Neural Collapse [18.160116254921608]
Trojan attacks are sophisticated training-time attacks on neural networks that embed backdoor triggers.
We provide experimental evidence that trojan attacks disrupt this convergence for a variety of datasets and architectures.
We then use this disruption to design a lightweight, broadly generalizable mechanism for cleansing trojan attacks.
arXiv Detail & Related papers (2024-11-19T22:57:40Z) - FreeEagle: Detecting Complex Neural Trojans in Data-Free Cases [50.065022493142116]
Trojan attack on deep neural networks, also known as backdoor attack, is a typical threat to artificial intelligence.
FreeEagle is the first data-free backdoor detection method that can effectively detect complex backdoor attacks.
arXiv Detail & Related papers (2023-02-28T11:31:29Z) - Quarantine: Sparsity Can Uncover the Trojan Attack Trigger for Free [126.15842954405929]
Trojan attacks threaten deep neural networks (DNNs) by poisoning them to behave normally on most samples, yet to produce manipulated results for inputs attached with a trigger.
We propose a novel Trojan network detection regime: first locating a "winning Trojan lottery ticket" which preserves nearly full Trojan information yet only chance-level performance on clean inputs; then recovering the trigger embedded in this already isolated subnetwork.
arXiv Detail & Related papers (2022-05-24T06:33:31Z) - CatchBackdoor: Backdoor Detection via Critical Trojan Neural Path Fuzzing [16.44147178061005]
trojaned behaviors triggered by various trojan attacks can be attributed to the trojan path.
We propose CatchBackdoor, a detection method against trojan attacks.
arXiv Detail & Related papers (2021-12-24T13:57:03Z) - A Synergetic Attack against Neural Network Classifiers combining
Backdoor and Adversarial Examples [11.534521802321976]
We show how to jointly exploit adversarial perturbation and model poisoning vulnerabilities to practically launch a new stealthy attack, dubbed AdvTrojan.
AdvTrojan is stealthy because it can be activated only when: 1) a carefully crafted adversarial perturbation is injected into the input examples during inference, and 2) a Trojan backdoor is implanted during the training process of the model.
arXiv Detail & Related papers (2021-09-03T02:18:57Z) - CLEANN: Accelerated Trojan Shield for Embedded Neural Networks [32.99727805086791]
We propose CLEANN, the first end-to-end framework that enables online mitigation of Trojans for embedded Deep Neural Network (DNN) applications.
A Trojan attack works by injecting a backdoor in the DNN while training; during inference, the Trojan can be activated by the specific backdoor trigger.
We leverage dictionary learning and sparse approximation to characterize the statistical behavior of benign data and identify Trojan triggers.
arXiv Detail & Related papers (2020-09-04T05:29:38Z) - Practical Detection of Trojan Neural Networks: Data-Limited and
Data-Free Cases [87.69818690239627]
We study the problem of the Trojan network (TrojanNet) detection in the data-scarce regime.
We propose a data-limited TrojanNet detector (TND), when only a few data samples are available for TrojanNet detection.
In addition, we propose a data-free TND, which can detect a TrojanNet without accessing any data samples.
arXiv Detail & Related papers (2020-07-31T02:00:38Z) - Cassandra: Detecting Trojaned Networks from Adversarial Perturbations [92.43879594465422]
In many cases, pre-trained models are sourced from vendors who may have disrupted the training pipeline to insert Trojan behaviors into the models.
We propose a method to verify if a pre-trained model is Trojaned or benign.
Our method captures fingerprints of neural networks in the form of adversarial perturbations learned from the network gradients.
arXiv Detail & Related papers (2020-07-28T19:00:40Z) - An Embarrassingly Simple Approach for Trojan Attack in Deep Neural
Networks [59.42357806777537]
trojan attack aims to attack deployed deep neural networks (DNNs) relying on hidden trigger patterns inserted by hackers.
We propose a training-free attack approach which is different from previous work, in which trojaned behaviors are injected by retraining model on a poisoned dataset.
The proposed TrojanNet has several nice properties including (1) it activates by tiny trigger patterns and keeps silent for other signals, (2) it is model-agnostic and could be injected into most DNNs, dramatically expanding its attack scenarios, and (3) the training-free mechanism saves massive training efforts compared to conventional trojan attack methods.
arXiv Detail & Related papers (2020-06-15T04:58:28Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
Deep learning models are vulnerable to Trojan attacks, where an attacker can install a backdoor during training time to make the resultant model misidentify samples contaminated with a small trigger patch.
We propose a novel trigger reverse-engineering based approach whose computational complexity does not scale with the number of labels, and is based on a measure that is both interpretable and universal across different network and patch types.
In experiments, we observe that our method achieves a perfect score in separating Trojaned models from pure models, which is an improvement over the current state-of-the art method.
arXiv Detail & Related papers (2020-06-10T04:12:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.