論文の概要: Seeing the Unseen: Errors and Bias in Visual Datasets
- arxiv url: http://arxiv.org/abs/2211.01847v1
- Date: Thu, 3 Nov 2022 14:34:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-04 12:14:51.890797
- Title: Seeing the Unseen: Errors and Bias in Visual Datasets
- Title(参考訳): 見えないものを見る:ビジュアルデータセットのエラーとバイアス
- Authors: Hongrui Jin
- Abstract要約: 本稿では,データセットのエラーとその影響をトラックする。
欠陥のあるデータセットは、限定されたカテゴリ、非包括的ソーシング、貧弱な分類の結果である可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: From face recognition in smartphones to automatic routing on self-driving
cars, machine vision algorithms lie in the core of these features. These
systems solve image based tasks by identifying and understanding objects,
subsequently making decisions from these information. However, errors in
datasets are usually induced or even magnified in algorithms, at times
resulting in issues such as recognising black people as gorillas and
misrepresenting ethnicities in search results. This paper tracks the errors in
datasets and their impacts, revealing that a flawed dataset could be a result
of limited categories, incomprehensive sourcing and poor classification.
- Abstract(参考訳): スマートフォンの顔認識から自動運転車の自動ルーティングまで、機械ビジョンアルゴリズムはこれらの機能の中核にある。
これらのシステムは、オブジェクトを特定して理解することで、画像に基づくタスクを解決する。
しかし、データセットのエラーは通常アルゴリズムによって引き起こされるか、拡大され、ときには黒人をゴリラとして認識したり、検索結果で民族を誤って表現したりするといった問題を引き起こす。
本稿では、データセットのエラーとその影響をトラックし、欠陥のあるデータセットは、限定されたカテゴリ、非包括的ソーシング、貧弱な分類の結果であることを示した。
関連論文リスト
- Mitigating Algorithmic Bias on Facial Expression Recognition [0.0]
バイアス付きデータセットはユビキタスであり、機械学習の課題を提示している。
偏りのあるデータセットの問題は、少数民族グループを扱う際に特に敏感である。
本研究は, 表情認識実験による偏差変化型オートエンコーダを用いて, 偏差を緩和する方法の1つを探る。
論文 参考訳(メタデータ) (2023-12-23T17:41:30Z) - Perception Datasets for Anomaly Detection in Autonomous Driving: A
Survey [4.731404257629232]
異常検出手法の評価のために複数の知覚データセットが作成されている。
このサーベイは構造化され、私たちの知る限り、自律運転における異常検出のための知覚データセットの完全な概要と比較を提供する。
論文 参考訳(メタデータ) (2023-02-06T14:07:13Z) - Predicting Seriousness of Injury in a Traffic Accident: A New Imbalanced
Dataset and Benchmark [62.997667081978825]
本稿では,交通事故における傷害の重大性を予測するために,機械学習アルゴリズムの性能を評価する新しいデータセットを提案する。
データセットは、英国運輸省から公開されているデータセットを集約することで作成される。
論文 参考訳(メタデータ) (2022-05-20T21:15:26Z) - Causal Scene BERT: Improving object detection by searching for
challenging groups of data [125.40669814080047]
コンピュータビジョンアプリケーションは、物体検出のようなタスクのためにニューラルネットワークでパラメータ化された学習ベースの知覚モジュールに依存している。
これらのモジュールは、トレーニングプロセスに固有のバイアスのため、予想される誤差が低いが、データの非定型的なグループに対して高い誤差を持つことが多い。
本研究の主な貢献は,シミュレートされたシーンに対して因果的介入を行うことにより,前向きにそのようなグループを発見する擬似オートマチック手法である。
論文 参考訳(メタデータ) (2022-02-08T05:14:16Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
近年のディープラーニングの進歩は、様々なコンピュータビジョンアプリケーションのための正確で効率的なモデルの開発につながっている。
高度に正確なモデルを学ぶには、大量の注釈付きイメージを持つデータセットの可用性に依存する。
このため、ラベルスカースデータセットに視覚的に異なる画像がある場合、モデルの性能は大幅に低下する。
論文 参考訳(メタデータ) (2021-05-27T23:34:06Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
トラフィックシーンの面白さを定量化する多様な基準を活用した新たなデータ選択手法を提案する。
実験の結果,提案するキュレーションパイプラインは,より汎用的で高いパフォーマンスをもたらすデータセットを選択できることが判明した。
論文 参考訳(メタデータ) (2021-01-16T23:45:02Z) - A Note on Data Biases in Generative Models [16.86600007830682]
生成モデルの性能に及ぼすデータセット品質の影響について検討する。
生成モデルによりデータセットの社会的バイアスがどのように再現されるかを示す。
本稿では,写真,油絵,アニメなどの多様なデータセット間の非ペア転送を通じて,クリエイティブな応用を提示する。
論文 参考訳(メタデータ) (2020-12-04T10:46:37Z) - Bringing the People Back In: Contesting Benchmark Machine Learning
Datasets [11.00769651520502]
機械学習データの系譜である研究プログラムを概説し、これらのデータセットの作成方法と理由について検討する。
機械学習におけるベンチマークデータセットを基盤として運用する方法を解説し、これらのデータセットについて4つの研究課題を提起する。
論文 参考訳(メタデータ) (2020-07-14T23:22:13Z) - REVISE: A Tool for Measuring and Mitigating Bias in Visual Datasets [64.76453161039973]
REVISE(Revealing VIsual biaSEs)は、視覚的データセットの調査を支援するツールである。
1)オブジェクトベース,(2)個人ベース,(3)地理ベースという3つの次元に沿った潜在的なバイアスを呈示する。
論文 参考訳(メタデータ) (2020-04-16T23:54:37Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
我々は、性別や人種の偏りを意識的に評価したマルチモーダルな合成プロファイルを用いて、自動求人アルゴリズムを訓練する。
我々の方法論と結果は、一般により公平なAIベースのツール、特により公平な自動採用システムを生成する方法を示している。
論文 参考訳(メタデータ) (2020-04-15T15:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。