論文の概要: FedGen: Generalizable Federated Learning for Sequential Data
- arxiv url: http://arxiv.org/abs/2211.01914v2
- Date: Tue, 30 May 2023 14:47:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 02:17:01.831918
- Title: FedGen: Generalizable Federated Learning for Sequential Data
- Title(参考訳): FedGen: シークエンシャルデータのための一般化可能なフェデレーションラーニング
- Authors: Praveen Venkateswaran, Vatche Isahagian, Vinod Muthusamy, Nalini
Venkatasubramanian
- Abstract要約: 多くの実世界の分散環境では、バイアスとデータサンプリングの問題により、急激な相関が存在する。
我々はFedGenという汎用的なフェデレーション学習フレームワークを提案し、クライアントが素早い特徴と不変な特徴を識別および識別できるようにする。
FedGenは、より優れた一般化を実現し、現在のフェデレーション学習手法の精度を24%以上上回るモデルが得られることを示す。
- 参考スコア(独自算出の注目度): 8.784435748969806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing federated learning models that follow the standard risk minimization
paradigm of machine learning often fail to generalize in the presence of
spurious correlations in the training data. In many real-world distributed
settings, spurious correlations exist due to biases and data sampling issues on
distributed devices or clients that can erroneously influence models. Current
generalization approaches are designed for centralized training and attempt to
identify features that have an invariant causal relationship with the target,
thereby reducing the effect of spurious features. However, such invariant risk
minimization approaches rely on apriori knowledge of training data
distributions which is hard to obtain in many applications. In this work, we
present a generalizable federated learning framework called FedGen, which
allows clients to identify and distinguish between spurious and invariant
features in a collaborative manner without prior knowledge of training
distributions. We evaluate our approach on real-world datasets from different
domains and show that FedGen results in models that achieve significantly
better generalization and can outperform the accuracy of current federated
learning approaches by over 24%.
- Abstract(参考訳): 機械学習の標準リスク最小化パラダイムに従う既存のフェデレーション学習モデルは、トレーニングデータに急激な相関が存在する場合、しばしば一般化に失敗する。
多くの実世界の分散環境では、偏りや分散デバイスやクライアント上のデータサンプリングの問題によって、誤った相関が発生する。
現在の一般化アプローチは、集中的なトレーニングのために設計され、ターゲットと不変因果関係を持つ特徴を識別しようとする。
しかし、このような不変リスク最小化アプローチは、多くのアプリケーションでは入手が難しい訓練データ分布のアプライオリ知識に依存している。
本稿では,FedGenと呼ばれる汎用的なフェデレーション学習フレームワークを提案する。これにより,クライアントは,学習分布の事前知識を必要とせずに,刺激的特徴と不変特徴を協調的に識別し,識別することができる。
我々は、異なるドメインからの実世界のデータセットに対するアプローチを評価し、FedGenがより優れた一般化を実現し、現在のフェデレーション学習アプローチの精度を24%以上向上できるモデルをもたらすことを示す。
関連論文リスト
- Reducing Spurious Correlation for Federated Domain Generalization [15.864230656989854]
オープンワールドのシナリオでは、グローバルモデルは特定のメディアによってキャプチャされた全く新しいドメインデータをうまく予測するのに苦労する可能性がある。
既存の手法はまだこの問題に対処するために、サンプルとラベルの間の強い統計的相関に頼っている。
ローカルレベルとグローバルレベルでの全体的な最適化フレームワークであるFedCDを紹介します。
論文 参考訳(メタデータ) (2024-07-27T05:06:31Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Advocating for the Silent: Enhancing Federated Generalization for Non-Participating Clients [38.804196122833645]
本稿では,フェデレートラーニングのための情報理論の一般化フレームワークについて紹介する。
局所分布の情報エントロピーを評価することで一般化誤差を定量化する。
導出一般化境界に着想を得て、重み付け集約アプローチとクライアント選択戦略の二重化を導入する。
論文 参考訳(メタデータ) (2023-10-11T03:39:56Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Exploiting Personalized Invariance for Better Out-of-distribution
Generalization in Federated Learning [13.246981646250518]
本稿では, 個人化学習手法と比較して, 個人化非分散を探索する汎用的な二重正規化学習フレームワークを提案する。
本手法は,既存のフェデレーション学習や不変学習よりも,多様なアウト・オブ・ディストリビューションおよび非IIDデータケースにおいて優れていることを示す。
論文 参考訳(メタデータ) (2022-11-21T08:17:03Z) - Feature Correlation-guided Knowledge Transfer for Federated
Self-supervised Learning [19.505644178449046]
特徴相関に基づくアグリゲーション(FedFoA)を用いたフェデレーション型自己教師型学習法を提案する。
私たちの洞察は、機能相関を利用して、特徴マッピングを整列し、ローカルトレーニングプロセス中にクライアント間でローカルモデルの更新を校正することにあります。
我々はFedFoAがモデルに依存しないトレーニングフレームワークであることを証明する。
論文 参考訳(メタデータ) (2022-11-14T13:59:50Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - Federated Multi-Task Learning under a Mixture of Distributions [10.00087964926414]
Federated Learning(FL)は、機械学習モデルのデバイス上での協調トレーニングのためのフレームワークである。
FLにおける最初の取り組みは、クライアント間で平均的なパフォーマンスを持つ単一のグローバルモデルを学ぶことに焦点を当てたが、グローバルモデルは、与えられたクライアントに対して任意に悪いかもしれない。
我々は,各局所データ分布が未知の基底分布の混合であるというフレキシブルな仮定の下で,フェデレーションMTLについて検討した。
論文 参考訳(メタデータ) (2021-08-23T15:47:53Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z) - On the Benefits of Invariance in Neural Networks [56.362579457990094]
データ拡張によるトレーニングは、リスクとその勾配をよりよく見積もることを示し、データ拡張でトレーニングされたモデルに対して、PAC-Bayes一般化を提供する。
また,データ拡張と比べ,平均化は凸損失を伴う場合の一般化誤差を低減し,PAC-Bayes境界を狭めることを示した。
論文 参考訳(メタデータ) (2020-05-01T02:08:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。