論文の概要: Scalable Multi-Agent Reinforcement Learning through Intelligent
Information Aggregation
- arxiv url: http://arxiv.org/abs/2211.02127v3
- Date: Tue, 16 May 2023 15:17:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 19:37:09.668003
- Title: Scalable Multi-Agent Reinforcement Learning through Intelligent
Information Aggregation
- Title(参考訳): インテリジェント情報集約によるスケーラブルなマルチエージェント強化学習
- Authors: Siddharth Nayak, Kenneth Choi, Wenqi Ding, Sydney Dolan, Karthik
Gopalakrishnan, Hamsa Balakrishnan
- Abstract要約: 本稿では,局所的情報を用いてエージェントの経路を分散的に計算するマルチエージェント強化学習(MARL)のための新しいアーキテクチャを提案する。
InforMARLは、アクターと批評家の両方のエージェントの局所的な近傍に関する情報をグラフニューラルネットワークを使用して集約し、標準的なMARLアルゴリズムと併用することができる。
- 参考スコア(独自算出の注目度): 6.09506921406322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of multi-agent navigation and collision avoidance
when observations are limited to the local neighborhood of each agent. We
propose InforMARL, a novel architecture for multi-agent reinforcement learning
(MARL) which uses local information intelligently to compute paths for all the
agents in a decentralized manner. Specifically, InforMARL aggregates
information about the local neighborhood of agents for both the actor and the
critic using a graph neural network and can be used in conjunction with any
standard MARL algorithm. We show that (1) in training, InforMARL has better
sample efficiency and performance than baseline approaches, despite using less
information, and (2) in testing, it scales well to environments with arbitrary
numbers of agents and obstacles. We illustrate these results using four task
environments, including one with predetermined goals for each agent, and one in
which the agents collectively try to cover all goals. Code available at
https://github.com/nsidn98/InforMARL.
- Abstract(参考訳): 各エージェントの局所的近傍で観測が制限された場合,マルチエージェントナビゲーションと衝突回避の問題を考える。
本稿では,マルチエージェント強化学習(MARL)のための新しいアーキテクチャであるInforMARLを提案する。
具体的には、InforMARLはアクターと批評家の両方のエージェントの局所的な近傍に関する情報をグラフニューラルネットワークを使って集約し、標準的なMARLアルゴリズムと併用することができる。
1) 学習中のインフォマレルは, 情報量が少ないにもかかわらず, ベースラインアプローチよりもサンプル効率と性能が優れており, (2) テストでは, 任意の数のエージェントや障害のある環境によく適用できることを示した。
各エージェントに所定の目標を持つものや,エージェントがまとめてすべての目標をカバーしようとするもの,という4つのタスク環境を用いて,これらの結果を説明する。
コードはhttps://github.com/nsidn98/informarl。
関連論文リスト
- Decentralized Monte Carlo Tree Search for Partially Observable
Multi-agent Pathfinding [49.730902939565986]
マルチエージェントパスフィンディング問題は、グラフに閉じ込められたエージェントのグループに対するコンフリクトフリーパスのセットを見つけることである。
本研究では、エージェントが他のエージェントをローカルにのみ観察できる分散MAPF設定に焦点を当てた。
MAPFタスクのための分散マルチエージェントモンテカルロ木探索法を提案する。
論文 参考訳(メタデータ) (2023-12-26T06:57:22Z) - Deep Multi-Agent Reinforcement Learning for Decentralized Active
Hypothesis Testing [11.639503711252663]
我々は,深層多エージェント強化学習の枠組みに根ざした新しいアルゴリズムを導入することで,マルチエージェント能動仮説テスト(AHT)問題に取り組む。
エージェントが協調戦略を学習し、性能を向上させる能力を効果的に示す実験結果を包括的に提示する。
論文 参考訳(メタデータ) (2023-09-14T01:18:04Z) - MA2CL:Masked Attentive Contrastive Learning for Multi-Agent
Reinforcement Learning [128.19212716007794]
我々はtextbfMulti-textbfAgent textbfMasked textbfAttentive textbfContrastive textbfLearning (MA2CL) という効果的なフレームワークを提案する。
MA2CLは、潜伏空間におけるマスクされたエージェント観察を再構築することにより、時間的およびエージェントレベルの予測の両方の学習表現を奨励する。
提案手法は,様々なMARLアルゴリズムの性能とサンプル効率を大幅に向上させ,様々な視覚的,状態的シナリオにおいて,他の手法よりも優れる。
論文 参考訳(メタデータ) (2023-06-03T05:32:19Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
オフラインマルチエージェント強化学習(MARL)は、事前コンパイルされたデータセットから効果的なマルチエージェントポリシーを学ぶことを目的としている。
オフラインのMARLが学んだエージェントは、しばしばこのランダムなポリシーを継承し、チーム全体のパフォーマンスを脅かす。
この問題に対処するために,共有個人軌道(SIT)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-28T18:11:26Z) - MARLlib: A Scalable and Efficient Multi-agent Reinforcement Learning
Library [82.77446613763809]
本稿では,マルチエージェントタスクとアルゴリズムの組み合わせを高速に開発するためのライブラリであるMARLlibを紹介する。
MARLlibは、マルチエージェントタスクとアルゴリズムの学習過程を効果的に切り離すことができる。
ライブラリのソースコードはGitHubで公開されている。
論文 参考訳(メタデータ) (2022-10-11T03:11:12Z) - On the Use and Misuse of Absorbing States in Multi-agent Reinforcement
Learning [55.95253619768565]
現在のMARLアルゴリズムは、実験を通してグループ内のエージェントの数が固定されていると仮定している。
多くの実践的な問題において、エージェントはチームメイトの前に終了する可能性がある。
本稿では,吸収状態を持つ完全連結層ではなく,注意を用いた既存の最先端MARLアルゴリズムのアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-11-10T23:45:08Z) - AoI-Aware Resource Allocation for Platoon-Based C-V2X Networks via
Multi-Agent Multi-Task Reinforcement Learning [22.890835786710316]
本稿は,小隊の無線リソース管理を意識した情報年齢(AoI)の問題について検討する。
複数の自律型プラトンは、C-V2X通信技術を利用して、協力的認識メッセージ(CAM)をフォロワーに広める。
我々は,マルチエージェント強化学習(marl)に基づく分散リソース割当フレームワークを活用し,各小隊リーダ(pl)がエージェントとして行動し,環境と相互作用して最適方針を学ぶ。
論文 参考訳(メタデータ) (2021-05-10T08:39:56Z) - Agent-Centric Representations for Multi-Agent Reinforcement Learning [12.577354830985012]
完全協調型マルチエージェント強化学習において,対象中心表現が有用であるかどうかを検討する。
具体的には、RLアルゴリズムにエージェント中心の誘導バイアスを組み込む2つの方法を検討する。
これらのアプローチをGoogle Research Football環境およびDeepMind Lab 2D上で評価します。
論文 参考訳(メタデータ) (2021-04-19T15:43:40Z) - HAMMER: Multi-Level Coordination of Reinforcement Learning Agents via
Learned Messaging [14.960795846548029]
協調型マルチエージェント強化学習(marl)は,ディープニューラルネットワークの表現学習能力を活用することで,大きな成果を上げている。
本稿では、観測空間全体を観測できる単一の、強力な、中央のエージェントが存在する場合と、局所的な観測のみを受信できる複数の、低パワーのローカルエージェントが相互に通信できない場合について考察する。
中央エージェントの役割は、グローバル観察に基づいて、異なるローカルエージェントに送信すべきメッセージを学ぶことであるが、個々のエージェントがよりよい決定を下せるように、どのような追加情報を受け取るべきかを決定することである。
論文 参考訳(メタデータ) (2021-01-18T19:00:12Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
我々は,MAML や Dif-MAML と呼ばれる協調型マルチエージェントメタ学習アルゴリズムを提案する。
提案手法により, エージェントの集合が線形速度で合意に達し, 集約MAMLの定常点に収束できることを示す。
シミュレーションの結果は従来の非協調的な環境と比較して理論的な結果と優れた性能を示している。
論文 参考訳(メタデータ) (2020-10-06T16:51:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。