A 3D-Shape Similarity-based Contrastive Approach to Molecular
Representation Learning
- URL: http://arxiv.org/abs/2211.02130v1
- Date: Thu, 3 Nov 2022 20:10:46 GMT
- Title: A 3D-Shape Similarity-based Contrastive Approach to Molecular
Representation Learning
- Authors: Austin Atsango, Nathaniel L. Diamant, Ziqing Lu, Tommaso Biancalani,
Gabriele Scalia, Kangway V. Chuang
- Abstract summary: We propose a new contrastive-learning procedure for graph neural networks, Molecular Contrastive Learning from Shape Similarity (MolCLaSS)
Rather than directly encoding or targeting three-dimensional poses, MolCLaSS matches a similarity objective based on Gaussian overlays to learn a meaningful representation of molecular shape.
- Score: 0.7340017786387767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Molecular shape and geometry dictate key biophysical recognition processes,
yet many graph neural networks disregard 3D information for molecular property
prediction. Here, we propose a new contrastive-learning procedure for graph
neural networks, Molecular Contrastive Learning from Shape Similarity
(MolCLaSS), that implicitly learns a three-dimensional representation. Rather
than directly encoding or targeting three-dimensional poses, MolCLaSS matches a
similarity objective based on Gaussian overlays to learn a meaningful
representation of molecular shape. We demonstrate how this framework naturally
captures key aspects of three-dimensionality that two-dimensional
representations cannot and provides an inductive framework for scaffold
hopping.
Related papers
- SE3Set: Harnessing equivariant hypergraph neural networks for molecular representation learning [27.713870291922333]
We develop an SE(3) equivariant hypergraph neural network architecture tailored for advanced molecular representation learning.
SE3Set has shown performance on par with state-of-the-art (SOTA) models for small molecule datasets.
It excels on the MD22 dataset, achieving a notable improvement of approximately 20% in accuracy across all molecules.
arXiv Detail & Related papers (2024-05-26T10:43:16Z) - A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
Recent advances in computational modelling of atomic systems represent them as geometric graphs with atoms embedded as nodes in 3D Euclidean space.
Geometric Graph Neural Networks have emerged as the preferred machine learning architecture powering applications ranging from protein structure prediction to molecular simulations and material generation.
This paper provides a comprehensive and self-contained overview of the field of Geometric GNNs for 3D atomic systems.
arXiv Detail & Related papers (2023-12-12T18:44:19Z) - 3D-Mol: A Novel Contrastive Learning Framework for Molecular Property Prediction with 3D Information [1.1777304970289215]
3D-Mol is a novel approach designed for more accurate spatial structure representation.
It deconstructs molecules into three hierarchical graphs to better extract geometric information.
We compare 3D-Mol with various state-of-the-art baselines on 7 benchmarks and demonstrate our outstanding performance.
arXiv Detail & Related papers (2023-09-28T10:05:37Z) - Unified Molecular Modeling via Modality Blending [35.16755562674055]
We introduce a novel "blend-then-predict" self-supervised learning method (MoleBLEND)
MoleBLEND blends atom relations from different modalities into one unified relation for matrix encoding, then recovers modality-specific information for both 2D and 3D structures.
Experiments show that MoleBLEND achieves state-of-the-art performance across major 2D/3D benchmarks.
arXiv Detail & Related papers (2023-07-12T15:27:06Z) - Automated 3D Pre-Training for Molecular Property Prediction [54.15788181794094]
We propose a novel 3D pre-training framework (dubbed 3D PGT)
It pre-trains a model on 3D molecular graphs, and then fine-tunes it on molecular graphs without 3D structures.
Extensive experiments on 2D molecular graphs are conducted to demonstrate the accuracy, efficiency and generalization ability of the proposed 3D PGT.
arXiv Detail & Related papers (2023-06-13T14:43:13Z) - Learning Harmonic Molecular Representations on Riemannian Manifold [18.49126496517951]
Molecular representation learning plays a crucial role in AI-assisted drug discovery research.
We propose a Harmonic Molecular Representation learning framework, which represents a molecule using the Laplace-Beltrami eigenfunctions of its molecular surface.
arXiv Detail & Related papers (2023-03-27T18:02:47Z) - Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible
Neural Networks [118.20778308823779]
We present a novel 3D primitive representation that defines primitives using an Invertible Neural Network (INN)
Our model learns to parse 3D objects into semantically consistent part arrangements without any part-level supervision.
arXiv Detail & Related papers (2021-03-18T17:59:31Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - ATOM3D: Tasks On Molecules in Three Dimensions [91.72138447636769]
Deep neural networks have recently gained significant attention.
In this work we present ATOM3D, a collection of both novel and existing datasets spanning several key classes of biomolecules.
We develop three-dimensional molecular learning networks for each of these tasks, finding that they consistently improve performance.
arXiv Detail & Related papers (2020-12-07T20:18:23Z) - Attention-Based Learning on Molecular Ensembles [0.0]
We describe an end-to-end deep learning approach that operates directly on small-moleculeal ensembles.
We show how attention-based pooling can elucidate key conformational poses in tasks based on molecular geometry.
arXiv Detail & Related papers (2020-11-25T15:23:52Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
We propose a primal-dual framework drawn from the graph-neural-network literature to triangle meshes.
Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them.
We provide theoretical insights of our approach using tools from the mesh-simplification literature.
arXiv Detail & Related papers (2020-10-23T14:49:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.