3D-Mol: A Novel Contrastive Learning Framework for Molecular Property Prediction with 3D Information
- URL: http://arxiv.org/abs/2309.17366v3
- Date: Fri, 28 Jun 2024 02:56:10 GMT
- Title: 3D-Mol: A Novel Contrastive Learning Framework for Molecular Property Prediction with 3D Information
- Authors: Taojie Kuang, Yiming Ren, Zhixiang Ren,
- Abstract summary: 3D-Mol is a novel approach designed for more accurate spatial structure representation.
It deconstructs molecules into three hierarchical graphs to better extract geometric information.
We compare 3D-Mol with various state-of-the-art baselines on 7 benchmarks and demonstrate our outstanding performance.
- Score: 1.1777304970289215
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Molecular property prediction, crucial for early drug candidate screening and optimization, has seen advancements with deep learning-based methods. While deep learning-based methods have advanced considerably, they often fall short in fully leveraging 3D spatial information. Specifically, current molecular encoding techniques tend to inadequately extract spatial information, leading to ambiguous representations where a single one might represent multiple distinct molecules. Moreover, existing molecular modeling methods focus predominantly on the most stable 3D conformations, neglecting other viable conformations present in reality. To address these issues, we propose 3D-Mol, a novel approach designed for more accurate spatial structure representation. It deconstructs molecules into three hierarchical graphs to better extract geometric information. Additionally, 3D-Mol leverages contrastive learning for pretraining on 20 million unlabeled data, treating their conformations with identical topological structures as weighted positive pairs and contrasting ones as negatives, based on the similarity of their 3D conformation descriptors and fingerprints. We compare 3D-Mol with various state-of-the-art baselines on 7 benchmarks and demonstrate our outstanding performance.
Related papers
- 3D Denoisers are Good 2D Teachers: Molecular Pretraining via Denoising
and Cross-Modal Distillation [65.35632020653291]
We propose D&D, a self-supervised molecular representation learning framework that pretrains a 2D graph encoder by distilling representations from a 3D denoiser.
We show that D&D can infer 3D information based on the 2D graph and shows superior performance and label-efficiency against other baselines.
arXiv Detail & Related papers (2023-09-08T01:36:58Z) - Geometry-aware Line Graph Transformer Pre-training for Molecular
Property Prediction [4.598522704308923]
Geometry-aware line graph transformer (Galformer) pre-training is a novel self-supervised learning framework.
Galformer consistently outperforms all baselines on both classification and regression tasks.
arXiv Detail & Related papers (2023-09-01T14:20:48Z) - Unified Molecular Modeling via Modality Blending [35.16755562674055]
We introduce a novel "blend-then-predict" self-supervised learning method (MoleBLEND)
MoleBLEND blends atom relations from different modalities into one unified relation for matrix encoding, then recovers modality-specific information for both 2D and 3D structures.
Experiments show that MoleBLEND achieves state-of-the-art performance across major 2D/3D benchmarks.
arXiv Detail & Related papers (2023-07-12T15:27:06Z) - Automated 3D Pre-Training for Molecular Property Prediction [54.15788181794094]
We propose a novel 3D pre-training framework (dubbed 3D PGT)
It pre-trains a model on 3D molecular graphs, and then fine-tunes it on molecular graphs without 3D structures.
Extensive experiments on 2D molecular graphs are conducted to demonstrate the accuracy, efficiency and generalization ability of the proposed 3D PGT.
arXiv Detail & Related papers (2023-06-13T14:43:13Z) - 3D Molecular Geometry Analysis with 2D Graphs [79.47097907673877]
Ground-state 3D geometries of molecules are essential for many molecular analysis tasks.
Modern quantum mechanical methods can compute accurate 3D geometries but are computationally prohibitive.
We propose a novel deep learning framework to predict 3D geometries from molecular graphs.
arXiv Detail & Related papers (2023-05-01T19:00:46Z) - A 3D-Shape Similarity-based Contrastive Approach to Molecular
Representation Learning [0.7340017786387767]
We propose a new contrastive-learning procedure for graph neural networks, Molecular Contrastive Learning from Shape Similarity (MolCLaSS)
Rather than directly encoding or targeting three-dimensional poses, MolCLaSS matches a similarity objective based on Gaussian overlays to learn a meaningful representation of molecular shape.
arXiv Detail & Related papers (2022-11-03T20:10:46Z) - Unified 2D and 3D Pre-Training of Molecular Representations [237.36667670201473]
We propose a new representation learning method based on a unified 2D and 3D pre-training.
Atom coordinates and interatomic distances are encoded and then fused with atomic representations through graph neural networks.
Our method achieves state-of-the-art results on 10 tasks, and the average improvement on 2D-only tasks is 8.3%.
arXiv Detail & Related papers (2022-07-14T11:36:56Z) - 3D Infomax improves GNNs for Molecular Property Prediction [1.9703625025720701]
We propose pre-training a model to reason about the geometry of molecules given only their 2D molecular graphs.
We show that 3D pre-training provides significant improvements for a wide range of properties.
arXiv Detail & Related papers (2021-10-08T13:30:49Z) - Spatio-temporal Self-Supervised Representation Learning for 3D Point
Clouds [96.9027094562957]
We introduce a-temporal representation learning framework, capable of learning from unlabeled tasks.
Inspired by how infants learn from visual data in the wild, we explore rich cues derived from the 3D data.
STRL takes two temporally-related frames from a 3D point cloud sequence as the input, transforms it with the spatial data augmentation, and learns the invariant representation self-supervisedly.
arXiv Detail & Related papers (2021-09-01T04:17:11Z) - Molecular machine learning with conformer ensembles [0.0]
We introduce multiple deep learning models that expand upon key architectures such as ChemProp and Schnet.
We then benchmark the performance trade-offs of these models on 2D, 3D and 4D representations in the prediction of drug activity.
The new architectures perform significantly better than 2D models, but their performance is often just as strong with a single conformer as with many.
arXiv Detail & Related papers (2020-12-15T17:44:48Z) - ATOM3D: Tasks On Molecules in Three Dimensions [91.72138447636769]
Deep neural networks have recently gained significant attention.
In this work we present ATOM3D, a collection of both novel and existing datasets spanning several key classes of biomolecules.
We develop three-dimensional molecular learning networks for each of these tasks, finding that they consistently improve performance.
arXiv Detail & Related papers (2020-12-07T20:18:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.