Adversarial Defense via Neural Oscillation inspired Gradient Masking
- URL: http://arxiv.org/abs/2211.02223v1
- Date: Fri, 4 Nov 2022 02:13:19 GMT
- Title: Adversarial Defense via Neural Oscillation inspired Gradient Masking
- Authors: Chunming Jiang, Yilei Zhang
- Abstract summary: Spiking neural networks (SNNs) attract great attention due to their low power consumption, low latency, and biological plausibility.
We propose a novel neural model that incorporates the bio-inspired oscillation mechanism to enhance the security of SNNs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) attract great attention due to their low power
consumption, low latency, and biological plausibility. As they are widely
deployed in neuromorphic devices for low-power brain-inspired computing,
security issues become increasingly important. However, compared to deep neural
networks (DNNs), SNNs currently lack specifically designed defense methods
against adversarial attacks. Inspired by neural membrane potential oscillation,
we propose a novel neural model that incorporates the bio-inspired oscillation
mechanism to enhance the security of SNNs. Our experiments show that SNNs with
neural oscillation neurons have better resistance to adversarial attacks than
ordinary SNNs with LIF neurons on kinds of architectures and datasets.
Furthermore, we propose a defense method that changes model's gradients by
replacing the form of oscillation, which hides the original training gradients
and confuses the attacker into using gradients of 'fake' neurons to generate
invalid adversarial samples. Our experiments suggest that the proposed defense
method can effectively resist both single-step and iterative attacks with
comparable defense effectiveness and much less computational costs than
adversarial training methods on DNNs. To the best of our knowledge, this is the
first work that establishes adversarial defense through masking surrogate
gradients on SNNs.
Related papers
- Training Spiking Neural Networks via Augmented Direct Feedback Alignment [3.798885293742468]
Spiking neural networks (SNNs) are promising solutions for implementing neural networks in neuromorphic devices.
However, the nondifferentiable nature of SNN neurons makes it a challenge to train them.
In this paper, we propose using augmented direct feedback alignment (aDFA), a gradient-free approach based on random projection, to train SNNs.
arXiv Detail & Related papers (2024-09-12T06:22:44Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
We focus on the task where the agent needs to learn multi-dimensional deterministic policies to control.
Most existing spike-based RL methods take the firing rate as the output of SNNs, and convert it to represent continuous action space (i.e., the deterministic policy) through a fully-connected layer.
To develop a fully spiking actor network without any floating-point matrix operations, we draw inspiration from the non-spiking interneurons found in insects.
arXiv Detail & Related papers (2024-01-09T07:31:34Z) - Sneaky Spikes: Uncovering Stealthy Backdoor Attacks in Spiking Neural
Networks with Neuromorphic Data [15.084703823643311]
spiking neural networks (SNNs) offer enhanced energy efficiency and biologically plausible data processing capabilities.
This paper delves into backdoor attacks in SNNs using neuromorphic datasets and diverse triggers.
We present various attack strategies, achieving an attack success rate of up to 100% while maintaining a negligible impact on clean accuracy.
arXiv Detail & Related papers (2023-02-13T11:34:17Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
Spiking neural networks (SNNs) with event-based computation are promising brain-inspired models for energy-efficient applications on neuromorphic hardware.
We study spike-based implicit differentiation on the equilibrium state (SPIDE) that extends the recently proposed training method.
arXiv Detail & Related papers (2023-02-01T04:22:59Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Toward Robust Spiking Neural Network Against Adversarial Perturbation [22.56553160359798]
spiking neural networks (SNNs) are deployed increasingly in real-world efficiency critical applications.
Researchers have already demonstrated an SNN can be attacked with adversarial examples.
To the best of our knowledge, this is the first analysis on robust training of SNNs.
arXiv Detail & Related papers (2022-04-12T21:26:49Z) - Analysis of Power-Oriented Fault Injection Attacks on Spiking Neural
Networks [5.7494562086770955]
Spiking Neural Networks (SNNs) are quickly gaining traction as a viable alternative to Deep Neural Networks (DNNs)
SNNs contain security-sensitive assets (e.g., neuron threshold voltage) and vulnerabilities that adversaries can exploit.
We investigate global fault injection attacks by employing external power supplies and laser-induced local power glitches.
We find that in the worst-case scenario, classification accuracy is reduced by 85.65%.
arXiv Detail & Related papers (2022-04-10T20:48:46Z) - Robustness of Bayesian Neural Networks to White-Box Adversarial Attacks [55.531896312724555]
Bayesian Networks (BNNs) are robust and adept at handling adversarial attacks by incorporating randomness.
We create our BNN model, called BNN-DenseNet, by fusing Bayesian inference (i.e., variational Bayes) to the DenseNet architecture.
An adversarially-trained BNN outperforms its non-Bayesian, adversarially-trained counterpart in most experiments.
arXiv Detail & Related papers (2021-11-16T16:14:44Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects
of Discrete Input Encoding and Non-Linear Activations [9.092733355328251]
Spiking Neural Network (SNN) is a potential candidate for inherent robustness against adversarial attacks.
In this work, we demonstrate that adversarial accuracy of SNNs under gradient-based attacks is higher than their non-spiking counterparts.
arXiv Detail & Related papers (2020-03-23T17:20:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.