Toward Robust Spiking Neural Network Against Adversarial Perturbation
- URL: http://arxiv.org/abs/2205.01625v1
- Date: Tue, 12 Apr 2022 21:26:49 GMT
- Title: Toward Robust Spiking Neural Network Against Adversarial Perturbation
- Authors: Ling Liang, Kaidi Xu, Xing Hu, Lei Deng, Yuan Xie
- Abstract summary: spiking neural networks (SNNs) are deployed increasingly in real-world efficiency critical applications.
Researchers have already demonstrated an SNN can be attacked with adversarial examples.
To the best of our knowledge, this is the first analysis on robust training of SNNs.
- Score: 22.56553160359798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As spiking neural networks (SNNs) are deployed increasingly in real-world
efficiency critical applications, the security concerns in SNNs attract more
attention. Currently, researchers have already demonstrated an SNN can be
attacked with adversarial examples. How to build a robust SNN becomes an urgent
issue. Recently, many studies apply certified training in artificial neural
networks (ANNs), which can improve the robustness of an NN model promisely.
However, existing certifications cannot transfer to SNNs directly because of
the distinct neuron behavior and input formats for SNNs. In this work, we first
design S-IBP and S-CROWN that tackle the non-linear functions in SNNs' neuron
modeling. Then, we formalize the boundaries for both digital and spike inputs.
Finally, we demonstrate the efficiency of our proposed robust training method
in different datasets and model architectures. Based on our experiment, we can
achieve a maximum $37.7\%$ attack error reduction with $3.7\%$ original
accuracy loss. To the best of our knowledge, this is the first analysis on
robust training of SNNs.
Related papers
- Data Poisoning-based Backdoor Attack Framework against Supervised Learning Rules of Spiking Neural Networks [3.9444202574850755]
Spiking Neural Networks (SNNs) are known for their low energy consumption and high robustness.
This paper explores the robustness performance of SNNs trained by supervised learning rules under backdoor attacks.
arXiv Detail & Related papers (2024-09-24T02:15:19Z) - NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
We propose a novel neural architecture search scheme for binary neural networks, named NAS-BNN.
Our discovered binary model family outperforms previous BNNs for a wide range of operations (OPs) from 20M to 200M.
In addition, we validate the transferability of these searched BNNs on the object detection task, and our binary detectors with the searched BNNs achieve a novel state-of-the-art result, e.g., 31.6% mAP with 370M OPs, on MS dataset.
arXiv Detail & Related papers (2024-08-28T02:17:58Z) - High-performance deep spiking neural networks with 0.3 spikes per neuron [9.01407445068455]
It is hard to train biologically-inspired spiking neural networks (SNNs) than artificial neural networks (ANNs)
We show that training deep SNN models achieves the exact same performance as that of ANNs.
Our SNN accomplishes high-performance classification with less than 0.3 spikes per neuron, lending itself for an energy-efficient implementation.
arXiv Detail & Related papers (2023-06-14T21:01:35Z) - SNN2ANN: A Fast and Memory-Efficient Training Framework for Spiking
Neural Networks [117.56823277328803]
Spiking neural networks are efficient computation models for low-power environments.
We propose a SNN-to-ANN (SNN2ANN) framework to train the SNN in a fast and memory-efficient way.
Experiment results show that our SNN2ANN-based models perform well on the benchmark datasets.
arXiv Detail & Related papers (2022-06-19T16:52:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Robustness of Bayesian Neural Networks to White-Box Adversarial Attacks [55.531896312724555]
Bayesian Networks (BNNs) are robust and adept at handling adversarial attacks by incorporating randomness.
We create our BNN model, called BNN-DenseNet, by fusing Bayesian inference (i.e., variational Bayes) to the DenseNet architecture.
An adversarially-trained BNN outperforms its non-Bayesian, adversarially-trained counterpart in most experiments.
arXiv Detail & Related papers (2021-11-16T16:14:44Z) - Pruning of Deep Spiking Neural Networks through Gradient Rewiring [41.64961999525415]
Spiking Neural Networks (SNNs) have been attached great importance due to their biological plausibility and high energy-efficiency on neuromorphic chips.
Most existing methods directly apply pruning approaches in artificial neural networks (ANNs) to SNNs, which ignore the difference between ANNs and SNNs.
We propose gradient rewiring (Grad R), a joint learning algorithm of connectivity and weight for SNNs, that enables us to seamlessly optimize network structure without retrain.
arXiv Detail & Related papers (2021-05-11T10:05:53Z) - Spiking Neural Networks with Single-Spike Temporal-Coded Neurons for
Network Intrusion Detection [6.980076213134383]
Spiking neural network (SNN) is interesting due to its strong bio-plausibility and high energy efficiency.
However, its performance is falling far behind conventional deep neural networks (DNNs)
arXiv Detail & Related papers (2020-10-15T14:46:18Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z) - An Efficient Spiking Neural Network for Recognizing Gestures with a DVS
Camera on the Loihi Neuromorphic Processor [12.118084418840152]
Spiking Neural Networks (SNNs) have come under the spotlight for machine learning based applications.
We show our methodology for the design of an SNN that achieves nearly the same accuracy results as its corresponding Deep Neural Networks (DNNs)
Our SNN achieves 89.64% classification accuracy and occupies only 37 Loihi cores.
arXiv Detail & Related papers (2020-05-16T17:00:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.