論文の概要: Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning
- arxiv url: http://arxiv.org/abs/2211.02468v1
- Date: Fri, 4 Nov 2022 13:54:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 16:27:22.068912
- Title: Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning
- Title(参考訳): 深層学習による対向的ロバスト性向上と感性障害・非分散攻撃
- Authors: Anaelia Ovalle, Evan Czyzycki, Cho-Jui Hsieh
- Abstract要約: 対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
- 参考スコア(独自算出の注目度): 80.21709045433096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intentionally crafted adversarial samples have effectively exploited
weaknesses in deep neural networks. A standard method in adversarial robustness
assumes a framework to defend against samples crafted by minimally perturbing a
sample such that its corresponding model output changes. These sensitivity
attacks exploit the model's sensitivity toward task-irrelevant features.
Another form of adversarial sample can be crafted via invariance attacks, which
exploit the model underestimating the importance of relevant features. Previous
literature has indicated a tradeoff in defending against both attack types
within a strictly L_p bounded defense. To promote robustness toward both types
of attacks beyond Euclidean distance metrics, we use metric learning to frame
adversarial regularization as an optimal transport problem. Our preliminary
results indicate that regularizing over invariant perturbations in our
framework improves both invariant and sensitivity defense.
- Abstract(参考訳): 故意に作られた敵のサンプルは、ディープニューラルネットワークの弱点を効果的に活用している。
敵対的ロバストネスの標準的な方法は、対応するモデル出力が変化するようにサンプルを最小に摂動させることで作られるサンプルに対して防御する枠組みを仮定する。
これらの感度攻撃は、タスク非関連の特徴に対するモデルの感度を利用する。
別の形態の反対サンプルは、関連する特徴の重要性を過小評価するモデルを利用する不変攻撃によって作成することができる。
以前の文献では、厳密なl_p境界防御において、両方の攻撃タイプに対する防御のトレードオフが示されている。
ユークリッド距離の測度を超えた2種類の攻撃に対するロバスト性を促進するため、最適輸送問題として対向正規化をフレーム化するために計量学習を用いる。
予備結果は,不変摂動の正則化により,不変性と感度の両防御性が向上することを示す。
関連論文リスト
- Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
現在の防衛は主に既知の攻撃に焦点を当てているが、未知の攻撃に対する敵意の強固さは見過ごされている。
メタ不変防衛(Meta Invariance Defense, MID)と呼ばれる攻撃非依存の防御手法を提案する。
MIDは高レベルの画像分類と低レベルの頑健な画像再生における攻撃抑制において,知覚不能な逆方向の摂動に対して同時に頑健性を実現する。
論文 参考訳(メタデータ) (2024-04-04T10:10:38Z) - Identifying Adversarially Attackable and Robust Samples [1.4213973379473654]
アドリアックは、入力サンプルに小さな、知覚不能な摂動を挿入し、ディープラーニングモデルの出力に大きな、望ましくない変化を引き起こす。
本研究は, 対人攻撃に最も影響を受けやすいサンプルを同定することを目的とした, サンプル攻撃可能性の概念を紹介する。
本研究では,未知のターゲットモデルに対する未知のデータセットにおいて,逆攻撃可能で頑健なサンプルを識別するディープラーニングベースの検出器を提案する。
論文 参考訳(メタデータ) (2023-01-30T13:58:14Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
深層学習システムは、人間の目には認識できないが、モデルが誤分類される可能性がある、人工的な敵の例に弱い。
我々は,オリジナルモデルに対する多様な決定境界を持つディフェンダーモデルを構築するための,アンサンブルに基づく新しいソリューションを開発した。
我々は、MNIST、CIFAR-10、CIFAR-100といった標準画像分類データセットを用いて、最先端の敵攻撃に対する広範な実験を行った。
論文 参考訳(メタデータ) (2022-08-18T08:19:26Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Towards Defending against Adversarial Examples via Attack-Invariant
Features [147.85346057241605]
ディープニューラルネットワーク(DNN)は敵の雑音に弱い。
敵の強靭性は、敵の例を利用して改善することができる。
目に見えない種類の敵の例に基づいて訓練されたモデルは、一般的に、目に見えない種類の敵の例にうまく一般化できない。
論文 参考訳(メタデータ) (2021-06-09T12:49:54Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial
Perturbations [65.05561023880351]
敵の例は誤分類を引き起こすために作られた悪意のある入力である。
本稿では, 相補的障害モード, 不変性に基づく逆数例について検討する。
感度に基づく攻撃に対する防御は、不変性に基づく攻撃に対するモデルの精度を積極的に損なうことを示す。
論文 参考訳(メタデータ) (2020-02-11T18:50:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。