Machine Learning Challenges of Biological Factors in Insect Image Data
- URL: http://arxiv.org/abs/2211.02537v1
- Date: Fri, 4 Nov 2022 15:58:20 GMT
- Title: Machine Learning Challenges of Biological Factors in Insect Image Data
- Authors: Nicholas Pellegrino, Zahra Gharaee and Paul Fieguth
- Abstract summary: The BIOSCAN project seeks to study changes in biodiversity on a global scale.
One component of the project is focused on studying the species interaction and dynamics of all insects.
Over 1.5 million images per year will be collected, each needing taxonomic classification.
- Score: 3.867363075280544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The BIOSCAN project, led by the International Barcode of Life Consortium,
seeks to study changes in biodiversity on a global scale. One component of the
project is focused on studying the species interaction and dynamics of all
insects. In addition to genetically barcoding insects, over 1.5 million images
per year will be collected, each needing taxonomic classification. With the
immense volume of incoming images, relying solely on expert taxonomists to
label the images would be impossible; however, artificial intelligence and
computer vision technology may offer a viable high-throughput solution.
Additional tasks including manually weighing individual insects to determine
biomass, remain tedious and costly. Here again, computer vision may offer an
efficient and compelling alternative. While the use of computer vision methods
is appealing for addressing these problems, significant challenges resulting
from biological factors present themselves. These challenges are formulated in
the context of machine learning in this paper.
Related papers
- Insect Identification in the Wild: The AMI Dataset [35.41544843896443]
Insects represent half of all global biodiversity, yet many of the world's insects are disappearing.
Despite this crisis, data on insect diversity and abundance remain woefully inadequate.
We provide the first large-scale machine learning benchmarks for fine-grained insect recognition.
arXiv Detail & Related papers (2024-06-18T09:57:02Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
We study the performance of large language models (LLMs) on a wide spectrum of crucial bioinformatics tasks.
These tasks include the identification of potential coding regions, extraction of named entities for genes and proteins, detection of antimicrobial and anti-cancer peptides, molecular optimization, and resolution of educational bioinformatics problems.
Our findings indicate that, given appropriate prompts, LLMs like GPT variants can successfully handle most of these tasks.
arXiv Detail & Related papers (2024-02-21T11:27:31Z) - Insect-Foundation: A Foundation Model and Large-scale 1M Dataset for Visual Insect Understanding [15.383106771910274]
Current machine vision model requires a large volume of data to achieve high performance.
We introduce a novel "Insect-1M" dataset, a game-changing resource poised to revolutionize insect-related foundation model training.
Covering a vast spectrum of insect species, our dataset, including 1 million images with dense identification labels of taxonomy hierarchy and insect descriptions, offers a panoramic view of entomology.
arXiv Detail & Related papers (2023-11-26T06:17:29Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
The challenge of replicating research results has posed a significant impediment to the field of molecular biology.
We first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective.
Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings.
arXiv Detail & Related papers (2023-11-01T14:44:01Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - A Step Towards Worldwide Biodiversity Assessment: The BIOSCAN-1M Insect
Dataset [18.211840156134784]
This paper presents a curated million-image dataset, primarily to train computer-vision models capable of providing image-based taxonomic assessment.
The dataset also presents compelling characteristics, the study of which would be of interest to the broader machine learning community.
arXiv Detail & Related papers (2023-07-19T20:54:08Z) - Deep learning powered real-time identification of insects using citizen
science data [17.13608307250744]
InsectNet can identify invasive species, provide fine-grained insect species identification, and work effectively in challenging backgrounds.
It can also abstain from making predictions when uncertain, facilitating seamless human intervention and making it a practical and trustworthy tool.
arXiv Detail & Related papers (2023-06-04T23:56:53Z) - Towards Generating Large Synthetic Phytoplankton Datasets for Efficient
Monitoring of Harmful Algal Blooms [77.25251419910205]
Harmful algal blooms (HABs) cause significant fish deaths in aquaculture farms.
Currently, the standard method to enumerate harmful algae and other phytoplankton is to manually observe and count them under a microscope.
We employ Generative Adversarial Networks (GANs) to generate synthetic images.
arXiv Detail & Related papers (2022-08-03T20:15:55Z) - Perspectives on individual animal identification from biology and
computer vision [58.81800919492064]
We review current advances of computer vision identification techniques to provide both computer scientists and biologists with an overview of the available tools.
We conclude by offering recommendations for starting an animal identification project, illustrate current limitations and propose how they might be addressed in the future.
arXiv Detail & Related papers (2021-02-28T16:50:09Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.