論文の概要: A Comparison of SVM against Pre-trained Language Models (PLMs) for Text
Classification Tasks
- arxiv url: http://arxiv.org/abs/2211.02563v1
- Date: Fri, 4 Nov 2022 16:28:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 15:59:11.322690
- Title: A Comparison of SVM against Pre-trained Language Models (PLMs) for Text
Classification Tasks
- Title(参考訳): テキスト分類作業における事前学習言語モデル(PLM)に対するSVMの比較
- Authors: Yasmen Wahba, Nazim Madhavji, John Steinbacher
- Abstract要約: ドメイン固有のコーパスでは、特定のタスクのために事前訓練されたモデルを微調整することで、パフォーマンスが向上することを示した。
3つのパブリックドメインフリーデータセットとドメイン固有の単語を含む実世界のデータセットにおける4つの異なるPLMの性能を比較した。
- 参考スコア(独自算出の注目度): 1.2934180951771599
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of pre-trained language models (PLMs) has shown great success
in many Natural Language Processing (NLP) tasks including text classification.
Due to the minimal to no feature engineering required when using these models,
PLMs are becoming the de facto choice for any NLP task. However, for
domain-specific corpora (e.g., financial, legal, and industrial), fine-tuning a
pre-trained model for a specific task has shown to provide a performance
improvement. In this paper, we compare the performance of four different PLMs
on three public domain-free datasets and a real-world dataset containing
domain-specific words, against a simple SVM linear classifier with TFIDF
vectorized text. The experimental results on the four datasets show that using
PLMs, even fine-tuned, do not provide significant gain over the linear SVM
classifier. Hence, we recommend that for text classification tasks, traditional
SVM along with careful feature engineering can pro-vide a cheaper and superior
performance than PLMs.
- Abstract(参考訳): 事前学習された言語モデル(PLM)の出現は、テキスト分類を含む多くの自然言語処理(NLP)タスクで大きな成功を収めている。
これらのモデルを使用する場合、最小限から不要な機能エンジニアリングのため、plmはあらゆるnlpタスクのデファクト選択となっている。
しかし、ドメイン固有のコーパス(例えば、財務、法律、産業)では、特定のタスクのための事前訓練されたモデルを微調整することで、パフォーマンスの向上が示されている。
本稿では,3つのパブリックドメインフリーデータセットとドメイン固有語を含む実世界のデータセットに対する4つの異なるPLMの性能を,TFIDFベクトル化テキストを用いた単純なSVM線形分類器と比較する。
4つのデータセットの実験結果から, PLMは細調整でも線形SVM分類器よりも大きな利得は得られないことがわかった。
したがって、テキスト分類タスクでは、従来のSVMと注意深い機能エンジニアリングが、PLMよりも安価で優れたパフォーマンスを証明できることを推奨する。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
大規模言語モデル(LLM)は、データサイエンスの標準ツールに匹敵するパフォーマンスで、最も予測可能な機能を選択することができる。
以上の結果から,LSMはトレーニングに最適な機能を選択するだけでなく,そもそもどの機能を収集すべきかを判断する上でも有用である可能性が示唆された。
論文 参考訳(メタデータ) (2024-07-02T22:23:40Z) - Synergizing Unsupervised and Supervised Learning: A Hybrid Approach for Accurate Natural Language Task Modeling [0.0]
本稿では,NLPタスクモデリングの精度を向上させるために,教師なし学習と教師なし学習を相乗化する新しいハイブリッド手法を提案する。
提案手法は,未ラベルコーパスから表現を学習する教師なしモジュールと,これらの表現を活用してタスク固有モデルを強化する教師付きモジュールを統合する。
手法の相乗化により、我々のハイブリッドアプローチはベンチマークデータセット上でSOTAの結果を達成し、よりデータ効率が高くロバストなNLPシステムを実現する。
論文 参考訳(メタデータ) (2024-06-03T08:31:35Z) - Adaptable and Reliable Text Classification using Large Language Models [7.962669028039958]
本稿では,Large Language Models(LLMs)を活用した適応的で信頼性の高いテキスト分類パラダイムを提案する。
我々は、4つの多様なデータセット上で、複数のLLM、機械学習アルゴリズム、ニューラルネットワークベースのアーキテクチャの性能を評価した。
システムの性能は、少数ショットや微調整の戦略によってさらに向上することができる。
論文 参考訳(メタデータ) (2024-05-17T04:05:05Z) - Evaluating Large Language Models for Health-Related Text Classification Tasks with Public Social Media Data [3.9459077974367833]
大規模言語モデル(LLM)は、NLPタスクにおいて顕著な成功を収めた。
我々は、サポートベクトルマシン(SVM)に基づく教師付き古典機械学習モデルと、RoBERTa、BERTweet、SocBERTに基づく3つの教師付き事前訓練言語モデル(PLM)と、6つのテキスト分類タスクで2つのLLMベースの分類器(GPT3.5、GPT4)をベンチマークした。
LLM(GPT-4)を用いた軽量教師付き分類モデルの訓練には,比較的小さな人手によるデータ拡張(GPT-4)が有効であることを示す総合的な実験を行った。
論文 参考訳(メタデータ) (2024-03-27T22:05:10Z) - TAT-LLM: A Specialized Language Model for Discrete Reasoning over Tabular and Textual Data [73.29220562541204]
我々は,言語モデル(LLM)の驚くべきパワーを活用して課題を解決することを検討する。
LLaMA2を微調整し,既存のエキスパートアノテートデータセットから自動生成したトレーニングデータを用いてTAT-LLM言語モデルを開発する。
論文 参考訳(メタデータ) (2024-01-24T04:28:50Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
大規模言語モデル(LLM)は、より大きな文脈長を扱う。
LLM は、ターゲットテキストが大きければ SotA を一貫して上回る。
ゼロショット学習よりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-12T17:17:27Z) - Attention is Not Always What You Need: Towards Efficient Classification
of Domain-Specific Text [1.1508304497344637]
階層構造に整理された数百のクラスを持つ大規模ITコーパスでは、階層構造における上位レベルのクラスの正確な分類が不可欠である。
ビジネスの世界では、高額なブラックボックスモデルよりも効率的で説明可能なMLモデルが好まれる。
PLMが広く使われているにもかかわらず、これらのモデルがドメイン固有のテキスト分類に使われている理由として、明確で明確な必要性が欠如している。
論文 参考訳(メタデータ) (2023-03-31T03:17:23Z) - Pre-trained Language Models for Keyphrase Generation: A Thorough
Empirical Study [76.52997424694767]
事前学習言語モデルを用いて,キーフレーズ抽出とキーフレーズ生成の詳細な実験を行った。
PLMは、競争力のある高リソース性能と最先端の低リソース性能を持つことを示す。
さらに,領域内のBERTライクなPLMを用いて,強大かつデータ効率のよいキーフレーズ生成モデルを構築できることが示唆された。
論文 参考訳(メタデータ) (2022-12-20T13:20:21Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
未知タスクの視覚言語モデルのためのモデル非依存型マルチタスクファインチューニング(MAMF)を提案する。
モデルに依存しないメタラーニング(MAML)と比較して、MAMFは二段階最適化を捨て、一階勾配のみを使用する。
MAMFは5つのベンチマークデータセット上で、数ショットの転送学習において古典的な微調整法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-03-09T17:26:53Z) - CSS-LM: A Contrastive Framework for Semi-supervised Fine-tuning of
Pre-trained Language Models [59.49705076369856]
プレトレーニング言語モデル(PLM)の微調整フェーズを改善するための新しいフレームワークを提案する。
大規模未ラベルコーパスから,タスクに対するドメインレベルおよびクラスレベルの意味的関連性に応じて,正および負のインスタンスを検索する。
次に、検索したラベル付きおよびオリジナルラベル付きの両方のインスタンスに対して、対照的な半教師付き学習を行い、PLMが重要なタスク関連セマンティックな特徴をキャプチャするのを助ける。
論文 参考訳(メタデータ) (2021-02-07T09:27:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。