論文の概要: PhysioGait: Context-Aware Physiological Context Modeling for Person
Re-identification Attack on Wearable Sensing
- arxiv url: http://arxiv.org/abs/2211.02622v1
- Date: Sun, 30 Oct 2022 03:59:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-13 23:47:17.090288
- Title: PhysioGait: Context-Aware Physiological Context Modeling for Person
Re-identification Attack on Wearable Sensing
- Title(参考訳): physioGait: ウェアラブルセンシングにおける人物再識別攻撃のための文脈認識型生理的コンテキストモデリング
- Authors: James O Sullivan and Mohammad Arif Ul Alam
- Abstract要約: 個人の再識別は、公開医療データにおいて重要なプライバシー侵害である。
本研究では,プライバシーに敏感な大規模ウェアラブルセンシングデータに対する新たなタイプのプライバシー脅威の可能性を検討する。
本研究では,空間情報と時間情報を個別に学習する文脈認識型生理信号モデルであるPhyloGaitを提案する。
- 参考スコア(独自算出の注目度): 1.776746672434207
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Person re-identification is a critical privacy breach in publicly shared
healthcare data. We investigate the possibility of a new type of privacy threat
on publicly shared privacy insensitive large scale wearable sensing data. In
this paper, we investigate user specific biometric signatures in terms of two
contextual biometric traits, physiological (photoplethysmography and
electrodermal activity) and physical (accelerometer) contexts. In this regard,
we propose PhysioGait, a context-aware physiological signal model that consists
of a Multi-Modal Siamese Convolutional Neural Network (mmSNN) which learns the
spatial and temporal information individually and performs sensor fusion in a
Siamese cost with the objective of predicting a person's identity. We evaluated
PhysioGait attack model using 4 real-time collected datasets (3-data under IRB
#HP-00064387 and one publicly available data) and two combined datasets
achieving 89% - 93% accuracy of re-identifying persons.
- Abstract(参考訳): 個人の再識別は、公開医療データにおいて重要なプライバシー侵害である。
本研究では,プライバシーに敏感な大規模ウェアラブルセンシングデータに対する新たなタイプのプライバシー脅威の可能性を検討する。
本稿では,生理的(フォトプレチスモグラフィと電極活動)と物理的(加速度計)の2つの文脈的バイオメトリック特性から,ユーザ固有のバイオメトリックシグネチャについて検討する。
そこで本研究では,空間的および時間的情報を個別に学習し,その人物のアイデンティティを予測する目的で,シアームコストでセンサ融合を行うマルチモーダルシアーム畳み込みニューラルネットワーク(mmsnn)からなる,文脈認識型生理学的信号モデルであるphysiogaitを提案する。
4つのリアルタイム収集データセット(irb #hp-00064387に基づく3-dataと1つの公開データ)と2つの組み合わせデータセット(再識別者の89%から93%の精度)を用いて,体力攻撃モデルを評価した。
関連論文リスト
- Model-Agnostic Utility-Preserving Biometric Information Anonymization [9.413512346732768]
近年のセンサ技術と機械学習技術の急速な進歩は、人々のバイオメトリックスの普遍的な収集と利用を引き起こしている。
生体認証の利用は、本質的なセンシティブな性質と、センシティブな情報を漏洩するリスクが高いため、深刻なプライバシー上の懸念を引き起こしている。
本稿では,生体データに対して,その感度特性を抑え,下流機械学習による解析に関連のある特徴を保持することで,生体データを匿名化できる新しいモダリティ非依存型データ変換フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-23T21:21:40Z) - Slice it up: Unmasking User Identities in Smartwatch Health Data [1.4797368693230672]
本稿では、時系列健康データに対する類似性に基づく動的時間ワープ(DTW)再識別攻撃のための新しいフレームワークを提案する。
私たちの攻撃はトレーニングデータとは独立しており、1つのCPUコア上で1万の被験者に対して約2分で類似性ランキングを計算します。
論文 参考訳(メタデータ) (2023-08-16T12:14:50Z) - Multi-Channel Time-Series Person and Soft-Biometric Identification [65.83256210066787]
本研究は, 深層建築を用いて異なる活動を行う人間の記録から, 個人とソフトバイオメトリックスを同定する。
マルチチャネル時系列ヒューマンアクティビティ認識(HAR)の4つのデータセットに対する手法の評価を行った。
ソフトバイオメトリクスに基づく属性表現は、有望な結果を示し、より大きなデータセットの必要性を強調している。
論文 参考訳(メタデータ) (2023-04-04T07:24:51Z) - Multimodal Adaptive Fusion of Face and Gait Features using Keyless
attention based Deep Neural Networks for Human Identification [67.64124512185087]
歩行のような軟式生体認証は、人物認識や再識別といった監視作業において顔に広く使われている。
本稿では,キーレス注意深層ニューラルネットワークを活用することで,歩行と顔のバイオメトリック・キューを動的に組み込むための適応型マルチバイオメトリック・フュージョン戦略を提案する。
論文 参考訳(メタデータ) (2023-03-24T05:28:35Z) - Pain level and pain-related behaviour classification using GRU-based
sparsely-connected RNNs [61.080598804629375]
慢性的な痛みを持つ人は、特定の身体の動きを無意識に適応させ、怪我や追加の痛みから身を守る。
この相関関係を分析するための専用のベンチマークデータベースが存在しないため、日々の行動に影響を及ぼす可能性のある特定の状況の1つを検討した。
我々は、複数のオートエンコーダを組み込んだゲートリカレントユニット(GRU)と疎結合なリカレントニューラルネットワーク(s-RNN)のアンサンブルを提案した。
本手法は,痛みレベルと痛み関連行動の両方の分類において,最先端のアプローチよりも優れていることを示すいくつかの実験を行った。
論文 参考訳(メタデータ) (2022-12-20T12:56:28Z) - Secure & Private Federated Neuroimaging [17.946206585229675]
Federated Learningは、データを共有することなく、複数のデータソース上でニューラルネットワークモデルの分散トレーニングを可能にする。
各サイトは、ニューラルネットワークをプライベートデータ上でしばらくトレーニングし、ニューラルネットワークパラメータをフェデレーションコントローラと共有する。
当社のフェデレートラーニングアーキテクチャであるMetisFLは、強力なセキュリティとプライバシを提供します。
論文 参考訳(メタデータ) (2022-05-11T03:36:04Z) - Persistent Animal Identification Leveraging Non-Visual Markers [71.14999745312626]
乱雑なホームケージ環境下で各マウスにユニークな識別子を時間をかけて発見し提供することを目的としている。
これは、(i)各マウスの視覚的特徴の区別の欠如、(ii)一定の閉塞を伴うシーンの密閉性のため、非常に難しい問題である。
本手法は, この動物識別問題に対して77%の精度を達成し, 動物が隠れているときの急激な検出を拒否することができる。
論文 参考訳(メタデータ) (2021-12-13T17:11:32Z) - A Deep Learning Approach to Private Data Sharing of Medical Images Using
Conditional GANs [1.2099130772175573]
COSENTYX (secukinumab) Ankylosing Spondylitis の臨床的検討に基づいて合成データセットを生成する方法を提案する。
本稿では, 画像の忠実度, サンプルの多様性, データセットのプライバシーの3つの重要な指標について, 合成データセットを生成し, その特性を詳細に分析する手法を提案する。
論文 参考訳(メタデータ) (2021-06-24T17:24:06Z) - Hide-and-Seek Privacy Challenge [88.49671206936259]
NeurIPS 2020 Hide-and-Seek Privacy Challengeは、両方の問題を解決するための新しい2トラックの競争だ。
我々の頭から頭までのフォーマットでは、新しい高品質な集中ケア時系列データセットを用いて、合成データ生成トラック(「ヒッシャー」)と患者再識別トラック(「シーカー」)の参加者が直接対決する。
論文 参考訳(メタデータ) (2020-07-23T15:50:59Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
非生理的表現と生理的特徴を混同するための横断的特徴分離戦略を提案する。
次に, 蒸留された生理特性を用いて, 頑健なマルチタスク生理測定を行った。
歪んだ特徴は、最終的に平均HR値やr信号のような複数の生理的信号の合同予測に使用される。
論文 参考訳(メタデータ) (2020-07-16T09:39:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。