A Data-Driven Evolutionary Transfer Optimization for Expensive Problems
in Dynamic Environments
- URL: http://arxiv.org/abs/2211.02879v1
- Date: Sat, 5 Nov 2022 11:19:50 GMT
- Title: A Data-Driven Evolutionary Transfer Optimization for Expensive Problems
in Dynamic Environments
- Authors: Ke Li, Renzhi Chen, Xin Yao
- Abstract summary: Data-driven, a.k.a. surrogate-assisted, evolutionary optimization has been recognized as an effective approach for tackling expensive black-box optimization problems.
This paper proposes a simple but effective transfer learning framework to empower data-driven evolutionary optimization to solve dynamic optimization problems.
Experiments on synthetic benchmark test problems and a real-world case study demonstrate the effectiveness of our proposed algorithm.
- Score: 9.098403098464704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many real-world problems are usually computationally costly and the objective
functions evolve over time. Data-driven, a.k.a. surrogate-assisted,
evolutionary optimization has been recognized as an effective approach for
tackling expensive black-box optimization problems in a static environment
whereas it has rarely been studied under dynamic environments. This paper
proposes a simple but effective transfer learning framework to empower
data-driven evolutionary optimization to solve dynamic optimization problems.
Specifically, it applies a hierarchical multi-output Gaussian process to
capture the correlation between data collected from different time steps with a
linearly increased number of hyperparameters. Furthermore, an adaptive source
task selection along with a bespoke warm staring initialization mechanisms are
proposed to better leverage the knowledge extracted from previous optimization
exercises. By doing so, the data-driven evolutionary optimization can jump
start the optimization in the new environment with a strictly limited
computational budget. Experiments on synthetic benchmark test problems and a
real-world case study demonstrate the effectiveness of our proposed algorithm
against nine state-of-the-art peer algorithms.
Related papers
- Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Solving Expensive Optimization Problems in Dynamic Environments with Meta-learning [32.41025515064283]
We propose a simple yet effective meta-learning-based optimization framework for solving expensive dynamic optimization problems.
This framework is flexible, allowing any off-the-shelf continuously differentiable surrogate model to be used in a plug-in manner.
Experiments demonstrate the effectiveness of the proposed algorithm framework compared to several state-of-the-art algorithms.
arXiv Detail & Related papers (2023-10-19T07:42:51Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Data-driven evolutionary algorithm for oil reservoir well-placement and
control optimization [3.012067935276772]
Generalized data-driven evolutionary algorithm (GDDE) is proposed to reduce the number of simulation runs on well-placement and control optimization problems.
Probabilistic neural network (PNN) is adopted as the classifier to select informative and promising candidates.
arXiv Detail & Related papers (2022-06-07T09:07:49Z) - High-dimensional Bayesian Optimization Algorithm with Recurrent Neural
Network for Disease Control Models in Time Series [1.9371782627708491]
We propose a new high dimensional Bayesian Optimization algorithm combining Recurrent neural networks.
The proposed RNN-BO algorithm can solve the optimal control problems in the lower dimension space.
We also discuss the impacts of different numbers of the RNN layers and training epochs on the trade-off between solution quality and related computational efforts.
arXiv Detail & Related papers (2022-01-01T08:40:17Z) - An Online Prediction Approach Based on Incremental Support Vector
Machine for Dynamic Multiobjective Optimization [19.336520152294213]
We propose a novel prediction algorithm based on incremental support vector machine (ISVM)
We treat the solving of dynamic multiobjective optimization problems (DMOPs) as an online learning process.
The proposed algorithm can effectively tackle dynamic multiobjective optimization problems.
arXiv Detail & Related papers (2021-02-24T08:51:23Z) - Incremental Data-driven Optimization of Complex Systems in Nonstationary
Environments [26.93254582875251]
This paper proposes a data-driven optimization algorithm to deal with the challenges presented by the dynamic environments.
First, a data stream ensemble learning method is adopted to train the surrogates so that each base learner of the ensemble learns the time-varying objective function in the previous environments.
After that, a multi-task evolutionary algorithm is employed to simultaneously optimize the problems in the past environments assisted by the ensemble surrogate.
arXiv Detail & Related papers (2020-12-14T02:55:42Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z) - Bilevel Optimization for Differentially Private Optimization in Energy
Systems [53.806512366696275]
This paper studies how to apply differential privacy to constrained optimization problems whose inputs are sensitive.
The paper shows that, under a natural assumption, a bilevel model can be solved efficiently for large-scale nonlinear optimization problems.
arXiv Detail & Related papers (2020-01-26T20:15:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.