Data-driven evolutionary algorithm for oil reservoir well-placement and
control optimization
- URL: http://arxiv.org/abs/2206.03127v1
- Date: Tue, 7 Jun 2022 09:07:49 GMT
- Title: Data-driven evolutionary algorithm for oil reservoir well-placement and
control optimization
- Authors: Guodong Chen, Xin Luo, Jimmy Jiu Jiao, Xiaoming Xue
- Abstract summary: Generalized data-driven evolutionary algorithm (GDDE) is proposed to reduce the number of simulation runs on well-placement and control optimization problems.
Probabilistic neural network (PNN) is adopted as the classifier to select informative and promising candidates.
- Score: 3.012067935276772
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Optimal well placement and well injection-production are crucial for the
reservoir development to maximize the financial profits during the project
lifetime. Meta-heuristic algorithms have showed good performance in solving
complex, nonlinear and non-continuous optimization problems. However, a large
number of numerical simulation runs are involved during the optimization
process. In this work, a novel and efficient data-driven evolutionary
algorithm, called generalized data-driven differential evolutionary algorithm
(GDDE), is proposed to reduce the number of simulation runs on well-placement
and control optimization problems. Probabilistic neural network (PNN) is
adopted as the classifier to select informative and promising candidates, and
the most uncertain candidate based on Euclidean distance is prescreened and
evaluated with a numerical simulator. Subsequently, local surrogate model is
built by radial basis function (RBF) and the optimum of the surrogate, found by
optimizer, is evaluated by the numerical simulator to accelerate the
convergence. It is worth noting that the shape factors of RBF model and PNN are
optimized via solving hyper-parameter sub-expensive optimization problem. The
results show the optimization algorithm proposed in this study is very
promising for a well-placement optimization problem of two-dimensional
reservoir and joint optimization of Egg model.
Related papers
- Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Sample-Efficient and Surrogate-Based Design Optimization of Underwater Vehicle Hulls [0.4543820534430522]
We show that theBO-LCB algorithm is the most sample-efficient optimization framework and has the best convergence behavior of those considered.
We also show that our DNN-based surrogate model predicts drag force on test data in tight agreement with CFD simulations, with a mean absolute percentage error (MAPE) of 1.85%.
We demonstrate a two-orders-of-magnitude speedup for the design optimization process when the surrogate model is used.
arXiv Detail & Related papers (2023-04-24T19:52:42Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - A Data-Driven Evolutionary Transfer Optimization for Expensive Problems
in Dynamic Environments [9.098403098464704]
Data-driven, a.k.a. surrogate-assisted, evolutionary optimization has been recognized as an effective approach for tackling expensive black-box optimization problems.
This paper proposes a simple but effective transfer learning framework to empower data-driven evolutionary optimization to solve dynamic optimization problems.
Experiments on synthetic benchmark test problems and a real-world case study demonstrate the effectiveness of our proposed algorithm.
arXiv Detail & Related papers (2022-11-05T11:19:50Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - High-dimensional Bayesian Optimization Algorithm with Recurrent Neural
Network for Disease Control Models in Time Series [1.9371782627708491]
We propose a new high dimensional Bayesian Optimization algorithm combining Recurrent neural networks.
The proposed RNN-BO algorithm can solve the optimal control problems in the lower dimension space.
We also discuss the impacts of different numbers of the RNN layers and training epochs on the trade-off between solution quality and related computational efforts.
arXiv Detail & Related papers (2022-01-01T08:40:17Z) - Iterative Surrogate Model Optimization (ISMO): An active learning
algorithm for PDE constrained optimization with deep neural networks [14.380314061763508]
We present a novel active learning algorithm, termed as iterative surrogate model optimization (ISMO)
This algorithm is based on deep neural networks and its key feature is the iterative selection of training data through a feedback loop between deep neural networks and any underlying standard optimization algorithm.
arXiv Detail & Related papers (2020-08-13T07:31:07Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.