論文の概要: Suffix Retrieval-Augmented Language Modeling
- arxiv url: http://arxiv.org/abs/2211.03053v1
- Date: Sun, 6 Nov 2022 07:53:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 16:44:47.254441
- Title: Suffix Retrieval-Augmented Language Modeling
- Title(参考訳): 接尾辞検索による言語モデル
- Authors: Zecheng Wang and Yik-Cheung Tam
- Abstract要約: 因果語モデリング(LM)は単語履歴を用いて次の単語を予測する。
一方,BERTは文中の双方向の単語情報を用いて,マスキング位置での単語の予測を行う。
本稿では,双方向の文脈効果を自己回帰的にシミュレートする新しいモデルを提案する。
- 参考スコア(独自算出の注目度): 1.8710230264817358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal language modeling (LM) uses word history to predict the next word.
BERT, on the other hand, makes use of bi-directional word information in a
sentence to predict words at masked positions. While BERT is effective in
sequence encoding, it is non-causal by nature and is not designed for sequence
generation. In this paper, we propose a novel language model, SUffix
REtrieval-Augmented LM (SUREALM), that simulates a bi-directional contextual
effect in an autoregressive manner. SUREALM employs an embedding retriever to
search for training sentences in a data store that share similar word history
during sequence generation. In particular, the suffix portions of the retrieved
sentences mimick the "future" context. We evaluated our proposed model on the
DSTC9 spoken dialogue corpus and showed promising word perplexity reduction on
the validation and test set compared to competitive baselines.
- Abstract(参考訳): 因果語モデリング(LM)は単語履歴を用いて次の単語を予測する。
一方,BERTは文中の双方向の単語情報を用いて,マスキング位置での単語の予測を行う。
BERTはシーケンスエンコーディングに有効であるが、本質的には非因果であり、シーケンス生成のために設計されていない。
本稿では,2方向の文脈効果を自己回帰的にシミュレートする新しい言語モデル Suffix Retrieval-Augmented LM (SUREALM) を提案する。
SUREALMは埋め込みレトリバーを使用して、シーケンス生成中に類似した単語履歴を共有するデータストア内のトレーニング文を検索する。
特に、検索された文の接尾辞部分は「未来」の文脈を模倣している。
提案するdstc9音声対話コーパスのモデルを評価し,競合ベースラインと比較して,検証とテストセットにおいて有望な単語パープレキシティ低減を示した。
関連論文リスト
- Modeling Sequential Sentence Relation to Improve Cross-lingual Dense
Retrieval [87.11836738011007]
マスク付き文モデル(MSM)と呼ばれる多言語多言語言語モデルを提案する。
MSMは、文表現を生成する文エンコーダと、文書から文ベクトルのシーケンスに適用される文書エンコーダとから構成される。
モデルをトレーニングするために,サンプル負の階層的コントラスト損失によって文ベクトルをマスクし,予測するマスク付き文予測タスクを提案する。
論文 参考訳(メタデータ) (2023-02-03T09:54:27Z) - Always Keep your Target in Mind: Studying Semantics and Improving
Performance of Neural Lexical Substitution [124.99894592871385]
本稿では,従来の言語モデルと最近の言語モデルの両方を用いた語彙置換手法の大規模比較研究を行う。
目的語に関する情報を適切に注入すれば,SOTA LMs/MLMsによるすでに競合する結果がさらに大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-06-07T16:16:19Z) - Word Order Does Matter (And Shuffled Language Models Know It) [9.990431777927421]
近年の研究では、ランダムに置換された文に対して事前訓練および/または微調整された言語モデルがGLUE上での競合性能を示すことが示されている。
シャッフルテキストエンコードから得られた位置埋め込みについて検討し、これらのモデルが元の自然主義的な単語順序に関する情報を保持することを示す。
論文 参考訳(メタデータ) (2022-03-21T14:10:15Z) - Dict-BERT: Enhancing Language Model Pre-training with Dictionary [42.0998323292348]
事前学習型言語モデル(PLM)は,大規模コーパス上で自己指導型学習タスクを行うことで,普遍的な言語表現を学習することを目的としている。
本研究では,辞書におけるレアワードの定義を活用することで,言語モデル事前学習の強化に焦点をあてる。
入力テキストシーケンスとまれな単語定義間の単語と文レベルのアライメントに関する2つの新しい自己教師付き事前学習タスクを提案する。
論文 参考訳(メタデータ) (2021-10-13T04:29:14Z) - Towards Document-Level Paraphrase Generation with Sentence Rewriting and
Reordering [88.08581016329398]
文書レベルのパラフレーズ生成のためのCoRPG(Coherence Relation Guided Paraphrase Generation)を提案する。
グラフGRUを用いて、コヒーレンス関係グラフを符号化し、各文のコヒーレンス対応表現を得る。
我々のモデルは、より多様性とセマンティックな保存を伴う文書パラフレーズを生成することができる。
論文 参考訳(メタデータ) (2021-09-15T05:53:40Z) - Using BERT Encoding and Sentence-Level Language Model for Sentence
Ordering [0.9134244356393667]
本稿では,短い記事のコーパスにおける文順序付けのアルゴリズムを提案する。
提案手法では,アテンション機構を用いて文の依存関係をキャプチャするUniversal Transformer (UT) に基づく言語モデルを用いる。
提案モデルには文、言語モデル、Brute Force Searchによる文配列の3つのコンポーネントが含まれている。
論文 参考訳(メタデータ) (2021-08-24T23:03:36Z) - Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word
Alignment [49.45399359826453]
言語間の言語モデルは通常、多言語テキストやパラレル文の言語モデリングで事前訓練される。
本稿では,新たな言語間事前学習課題として認知単語アライメントを導入する。
実験結果から,本手法は各種データセットの言語間移動性を向上することが示された。
論文 参考訳(メタデータ) (2021-06-11T13:36:01Z) - CharBERT: Character-aware Pre-trained Language Model [36.9333890698306]
本稿ではCharBERTという文字認識事前学習言語モデルを提案する。
まず、逐次的文字表現から各トークンに対する文脈単語埋め込みを構築する。
次に、新しい異種相互作用モジュールによって文字とサブワードの表現を融合する。
論文 参考訳(メタデータ) (2020-11-03T07:13:06Z) - Improving Text Generation with Student-Forcing Optimal Transport [122.11881937642401]
トレーニングモードとテストモードで生成されたシーケンスに最適なトランスポート(OT)を提案する。
テキストシーケンスの構造的および文脈的情報に基づいて、OT学習を改善するための拡張も提案されている。
提案手法の有効性は,機械翻訳,テキスト要約,テキスト生成タスクにおいて検証される。
論文 参考訳(メタデータ) (2020-10-12T19:42:25Z) - PALM: Pre-training an Autoencoding&Autoregressive Language Model for
Context-conditioned Generation [92.7366819044397]
自己指導型事前学習は、自然言語の理解と生成のための強力な技術として登場した。
本研究は,大規模未ラベルコーパス上で自己エンコーディングと自己回帰言語モデルを共同で事前学習する新しいスキームをPALMに提示する。
広範な実験により、PALMは様々な言語生成ベンチマークにおいて、新しい最先端の結果を達成することが示されている。
論文 参考訳(メタデータ) (2020-04-14T06:25:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。