論文の概要: LG-Hand: Advancing 3D Hand Pose Estimation with Locally and Globally
Kinematic Knowledge
- arxiv url: http://arxiv.org/abs/2211.03151v1
- Date: Sun, 6 Nov 2022 15:26:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 17:32:30.309928
- Title: LG-Hand: Advancing 3D Hand Pose Estimation with Locally and Globally
Kinematic Knowledge
- Title(参考訳): LG-Hand: 局所的およびグローバルなキネマティック知識による3Dハンドポース推定の改善
- Authors: Tu Le-Xuan, Trung Tran-Quang, Thi Ngoc Hien Doan, Thanh-Hai Tran
- Abstract要約: 本稿では3次元手ポーズ推定のための強力な手法であるLG-Handを提案する。
キネマティックな情報が重要な役割を担い、3次元手ポーズ推定の性能に寄与すると主張している。
提案手法は,Person Hand Action Benchmarkデータセット上で有望な結果を得る。
- 参考スコア(独自算出の注目度): 0.693939291118954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D hand pose estimation from RGB images suffers from the difficulty of
obtaining the depth information. Therefore, a great deal of attention has been
spent on estimating 3D hand pose from 2D hand joints. In this paper, we
leverage the advantage of spatial-temporal Graph Convolutional Neural Networks
and propose LG-Hand, a powerful method for 3D hand pose estimation. Our method
incorporates both spatial and temporal dependencies into a single process. We
argue that kinematic information plays an important role, contributing to the
performance of 3D hand pose estimation. We thereby introduce two new objective
functions, Angle and Direction loss, to take the hand structure into account.
While Angle loss covers locally kinematic information, Direction loss handles
globally kinematic one. Our LG-Hand achieves promising results on the
First-Person Hand Action Benchmark (FPHAB) dataset. We also perform an ablation
study to show the efficacy of the two proposed objective functions.
- Abstract(参考訳): RGB画像からの3次元手ポーズ推定は深度情報を得るのが困難である。
そのため, 2次元手指関節から3次元手足の位置推定に多くの注意が払われている。
本稿では,空間-時間グラフ畳み込みニューラルネットワークの利点を活用し,3次元ポーズ推定のための強力な手法であるlg-handを提案する。
本手法は,空間的および時間的依存関係を一つのプロセスに組み込む。
キネマティックな情報が重要な役割を担っており、3dハンドポーズ推定の性能に寄与していると論じる。
これにより、手の構造を考慮した2つの新たな目的関数、角度損失と方向損失を導入する。
角度損失は局所運動情報をカバーするが、方向損失はグローバルな運動情報を扱う。
我々のLG-Handは、First-Person Hand Action Benchmark (FPHAB)データセットで有望な結果を得る。
また,2つの目的関数の有効性を示すためのアブレーション研究も行った。
関連論文リスト
- SHARP: Segmentation of Hands and Arms by Range using Pseudo-Depth for Enhanced Egocentric 3D Hand Pose Estimation and Action Recognition [5.359837526794863]
ハンドポーズは、エゴセントリックな視点における行動認識のための重要な情報である。
擬似深度画像のみを用いてRGBフレームに基づく自家中心の3次元ポーズ推定を改善することを提案する。
論文 参考訳(メタデータ) (2024-08-19T14:30:29Z) - In My Perspective, In My Hands: Accurate Egocentric 2D Hand Pose and Action Recognition [1.4732811715354455]
アクション認識は、エゴセントリックなビデオ理解に不可欠であり、ユーザの努力なしに日々の生活活動(ADL)の自動的かつ継続的なモニタリングを可能にする。
既存の文献では、計算集約的な深度推定ネットワークを必要とする3Dハンドポーズ入力や、不快な深度センサーを装着することに焦点を当てている。
EffHandEgoNetとEffHandEgoNetの2つの新しい手法を導入する。
論文 参考訳(メタデータ) (2024-04-14T17:33:33Z) - 3D Interacting Hand Pose Estimation by Hand De-occlusion and Removal [85.30756038989057]
単一のRGB画像から3Dインタラクションハンドポーズを推定することは、人間の行動を理解するのに不可欠である。
本稿では,難易度の高い手ポーズ推定タスクを分解し,各手のポーズを別々に推定することを提案する。
実験の結果,提案手法は従来の手ポーズ推定手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2022-07-22T13:04:06Z) - What's in your hands? 3D Reconstruction of Generic Objects in Hands [49.12461675219253]
我々の研究は、単一のRGB画像からハンドヘルドオブジェクトを再構築することを目的としている。
通常、既知の3Dテンプレートを仮定し、問題を3Dポーズ推定に還元する以前の作業とは対照的に、我々の作業は3Dテンプレートを知らずに汎用的なハンドヘルドオブジェクトを再構成する。
論文 参考訳(メタデータ) (2022-04-14T17:59:02Z) - 3D Hand Pose and Shape Estimation from RGB Images for Improved
Keypoint-Based Hand-Gesture Recognition [25.379923604213626]
本稿では3次元手とポーズ推定のためのキーポイントに基づくエンドツーエンドフレームワークを提案する。
研究ケースとして手身認識タスクにうまく適用できる。
論文 参考訳(メタデータ) (2021-09-28T17:07:43Z) - Egocentric View Hand Action Recognition by Leveraging Hand Surface and
Hand Grasp Type [15.878905144552204]
このフレームワークは、手メッシュモデルの平均曲率を合成し、3次元空間における手表面形状を符号化する。
手のつかみタイプと手の平均曲率を用いることで,手の動き認識の性能が向上する。
論文 参考訳(メタデータ) (2021-09-08T17:12:02Z) - Learning to Disambiguate Strongly Interacting Hands via Probabilistic
Per-pixel Part Segmentation [84.28064034301445]
自己相似性と、それぞれの手にピクセル観察を割り当てるあいまいさは、最終的な3Dポーズエラーの大きな原因である。
1つの単眼画像から2つの手の3次元ポーズを推定する新しい手法であるDIGITを提案する。
提案手法は,InterHand2.6Mデータセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2021-07-01T13:28:02Z) - H2O: Two Hands Manipulating Objects for First Person Interaction
Recognition [70.46638409156772]
両手操作対象のマーカーレス3Dアノテーションを用いて,エゴセントリックな対話認識のための包括的なフレームワークを提案する。
本手法は,2つの手の3次元ポーズと操作対象の6次元ポーズのアノテーションと,それぞれのフレームのインタラクションラベルを生成する。
我々のデータセットは、H2O (2 Hands and Objects)と呼ばれ、同期されたマルチビューRGB-D画像、対話ラベル、オブジェクトクラス、左右の手でのグラウンドトルース3Dポーズ、6Dオブジェクトポーズ、グラウンドトルースカメラポーズ、オブジェクトメッシュ、シーンポイントクラウドを提供する。
論文 参考訳(メタデータ) (2021-04-22T17:10:42Z) - MM-Hand: 3D-Aware Multi-Modal Guided Hand Generative Network for 3D Hand
Pose Synthesis [81.40640219844197]
モノラルなRGB画像から3Dハンドポーズを推定することは重要だが難しい。
解決策は、高精度な3D手指キーポイントアノテーションを用いた大規模RGB手指画像のトレーニングである。
我々は,現実的で多様な3次元ポーズ保存ハンドイメージを合成する学習ベースアプローチを開発した。
論文 参考訳(メタデータ) (2020-10-02T18:27:34Z) - Measuring Generalisation to Unseen Viewpoints, Articulations, Shapes and
Objects for 3D Hand Pose Estimation under Hand-Object Interaction [137.28465645405655]
HANDS'19は、現在の3Dハンドポーズ推定器(HPE)がトレーニングセットのポーズを補間し、外挿する能力を評価するための課題である。
本研究では,最先端手法の精度が低下し,トレーニングセットから外れたポーズでほとんど失敗することを示す。
論文 参考訳(メタデータ) (2020-03-30T19:28:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。