論文の概要: Performance and utility trade-off in interpretable sleep staging
- arxiv url: http://arxiv.org/abs/2211.03282v1
- Date: Mon, 7 Nov 2022 03:27:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 16:28:08.127264
- Title: Performance and utility trade-off in interpretable sleep staging
- Title(参考訳): 解釈可能な睡眠ステージングにおけるパフォーマンスとユーティリティトレードオフ
- Authors: Irfan Al-Hussaini, Cassie S. Mitchell
- Abstract要約: 脳波、EOG、筋電図などの生理学的信号に基づいて、臨床診断支援システム、睡眠ステージングの解釈方法について検討する。
提案されたフレームワークであるNormIntSleepは、正規化機能を使用してディープラーニングの埋め込みを表現することで、さまざまなデータセット間で優れたパフォーマンスを得ることができることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in deep learning have led to the development of models
approaching human level of accuracy. However, healthcare remains an area
lacking in widespread adoption. The safety-critical nature of healthcare
results in a natural reticence to put these black-box deep learning models into
practice. In this paper, we explore interpretable methods for a clinical
decision support system, sleep staging, based on physiological signals such as
EEG, EOG, and EMG. A recent work has shown sleep staging using simple models
and an exhaustive set of features can perform nearly as well as deep learning
approaches but only for certain datasets. Moreover, the utility of these
features from a clinical standpoint is unclear. On the other hand, the proposed
framework, NormIntSleep shows that by representing deep learning embeddings
using normalized features, great performance can be obtained across different
datasets. NormIntSleep performs 4.5% better than the exhaustive feature-based
approach and 1.5% better than other representation learning approaches. An
empirical comparison between the utility of the interpretations of these models
highlights the improved alignment with clinical expectations when performance
is traded-off slightly.
- Abstract(参考訳): 近年のディープラーニングの進歩は、人間の精度に近づくモデルの開発につながっている。
しかし、医療は広く普及していない分野である。
医療の安全性に欠かせない性質は、これらのブラックボックスのディープラーニングモデルを実践するために自然なレチレンスをもたらす。
本稿では,脳波,EOG,筋電図などの生理学的信号に基づいて,臨床診断支援システム,睡眠ステージングの解釈方法について検討する。
最近の研究では、単純なモデルを使って睡眠ステージングを示しており、徹底した機能セットは、ディープラーニングのアプローチと同様に、特定のデータセットでのみ実行できる。
また,これらの特徴の臨床的有用性は明らかでない。
一方,推奨フレームワークであるnormintsleepでは,正規化特徴を用いたディープラーニング組込みを表現すれば,さまざまなデータセットで優れたパフォーマンスが得られることを示す。
normintsleepは機能ベースアプローチよりも4.5%、他の表現学習アプローチよりも1.5%優れている。
これらのモデルの解釈の実用性に対する実証的な比較は、パフォーマンスがわずかにトレードオフされたときに臨床上の期待と整合性が改善されていることを強調している。
関連論文リスト
- On the Out of Distribution Robustness of Foundation Models in Medical
Image Segmentation [47.95611203419802]
視覚と言語の基礎は、様々な自然画像とテキストデータに基づいて事前訓練されており、有望なアプローチとして現れている。
一般化性能を,同じ分布データセット上で微調整した後,事前学習した各種モデルの未確認領域と比較した。
さらに,凍結モデルに対する新しいベイズ不確実性推定法を開発し,分布外データに基づくモデルの性能評価指標として利用した。
論文 参考訳(メタデータ) (2023-11-18T14:52:10Z) - Transparency in Sleep Staging: Deep Learning Method for EEG Sleep Stage
Classification with Model Interpretability [5.747465732334616]
本研究では,残差ネットワーク内に圧縮ブロックと励起ブロックを統合し,複雑な時間的依存関係を理解するために,特徴抽出と積み重ねBi-LSTMを組み込んだエンド・ツー・エンドディープラーニング(DL)モデルを提案する。
本研究の特筆すべき側面は、睡眠ステージングのためのGradCamの適応であり、この領域における説明可能なDLモデルの最初の事例であり、その決定と睡眠専門家の洞察の一致である。
論文 参考訳(メタデータ) (2023-09-10T17:56:03Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Do Not Sleep on Linear Models: Simple and Interpretable Techniques
Outperform Deep Learning for Sleep Scoring [1.6339105551302067]
私たちは、睡眠スコアリングのディープラーニングソリューションのほとんどは、トレーニング、デプロイ、再現が難しいため、実際の適用性に制限がある、と論じています。
本研究では,従来の機械学習を用いた睡眠ステージ分類の問題を再考する。
その結果、従来の機械学習パイプラインでは、最先端のパフォーマンスが達成できることがわかった。
論文 参考訳(メタデータ) (2022-07-15T21:03:11Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - Enhancing Clinical Information Extraction with Transferred Contextual
Embeddings [9.143551270841858]
変換器(BERT)モデルによる双方向表現は、多くの自然言語処理(NLP)タスクにおいて最先端のパフォーマンスを達成した。
BERTをベースとした事前学習モデルは,軽度条件下で健康関連文書に転送可能であることを示す。
論文 参考訳(メタデータ) (2021-09-15T12:22:57Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - Learning Realistic Patterns from Unrealistic Stimuli: Generalization and
Data Anonymization [0.5091527753265949]
本研究は、匿名化されたデータ合成において、サードパーティがそのようなプライベートデータから恩恵を受けられるような、シンプルかつ非従来的なアプローチについて検討する。
オープンおよび大規模臨床研究の睡眠モニタリングデータを用いて,(1)エンドユーザーが睡眠時無呼吸検出のためにカスタマイズされた分類モデルを作成し,有効活用できるかどうかを評価し,(2)研究参加者の身元を保護した。
論文 参考訳(メタデータ) (2020-09-21T16:31:21Z) - MetaSleepLearner: A Pilot Study on Fast Adaptation of Bio-signals-Based
Sleep Stage Classifier to New Individual Subject Using Meta-Learning [15.451212330924447]
モデル非依存メタラーニング(MAML)に基づく転移学習フレームワークMetaSleepLearnerを提案する。
従来のアプローチと比較すると、MetaSleepLearnerは5.4%から17.7%の改善を達成している。
これは、非伝統的な事前学習手法であるMAMLを調査した最初の研究であり、その結果、睡眠段階分類における人間と機械の協調が可能となった。
論文 参考訳(メタデータ) (2020-04-08T16:31:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。