BuildMapper: A Fully Learnable Framework for Vectorized Building Contour
Extraction
- URL: http://arxiv.org/abs/2211.03373v1
- Date: Mon, 7 Nov 2022 08:58:35 GMT
- Title: BuildMapper: A Fully Learnable Framework for Vectorized Building Contour
Extraction
- Authors: Shiqing Wei, Tao Zhang, Shunping Ji, Muying Luo, Jianya Gong
- Abstract summary: We propose the first end-to-end learnable building contour extraction framework, named BuildMapper.
BuildMapper can directly and efficiently delineate building polygons just as a human does.
We show that BuildMapper can achieve a state-of-the-art performance, with a higher mask average precision (AP) and boundary AP than both segmentation-based and contour-based methods.
- Score: 3.862461804734488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning based methods have significantly boosted the study of automatic
building extraction from remote sensing images. However, delineating vectorized
and regular building contours like a human does remains very challenging, due
to the difficulty of the methodology, the diversity of building structures, and
the imperfect imaging conditions. In this paper, we propose the first
end-to-end learnable building contour extraction framework, named BuildMapper,
which can directly and efficiently delineate building polygons just as a human
does. BuildMapper consists of two main components: 1) a contour initialization
module that generates initial building contours; and 2) a contour evolution
module that performs both contour vertex deformation and reduction, which
removes the need for complex empirical post-processing used in existing
methods. In both components, we provide new ideas, including a learnable
contour initialization method to replace the empirical methods, dynamic
predicted and ground truth vertex pairing for the static vertex correspondence
problem, and a lightweight encoder for vertex information extraction and
aggregation, which benefit a general contour-based method; and a well-designed
vertex classification head for building corner vertices detection, which casts
light on direct structured building contour extraction. We also built a
suitable large-scale building dataset, the WHU-Mix (vector) building dataset,
to benefit the study of contour-based building extraction methods. The
extensive experiments conducted on the WHU-Mix (vector) dataset, the WHU
dataset, and the CrowdAI dataset verified that BuildMapper can achieve a
state-of-the-art performance, with a higher mask average precision (AP) and
boundary AP than both segmentation-based and contour-based methods.
Related papers
- RoIPoly: Vectorized Building Outline Extraction Using Vertex and Logit Embeddings [5.093758132026397]
We propose a novel query-based approach for extracting building outlines from aerial or satellite imagery.
We formulate each polygon as a query and constrain the query attention on the most relevant regions of a potential building.
We evaluate our method on the vectorized building outline extraction dataset CrowdAI and the 2D floorplan reconstruction dataset Structured3D.
arXiv Detail & Related papers (2024-07-20T16:12:51Z) - P2PFormer: A Primitive-to-polygon Method for Regular Building Contour Extraction from Remote Sensing Images [5.589842901102337]
Existing methods struggle with irregular contours, rounded corners, and redundancy points.
We introduce a novel, streamlined pipeline that generates regular building contours without post-processing.
P2PFormer achieves new state-of-the-art performance on the WHU, CrowdAI, and WHU-Mix datasets.
arXiv Detail & Related papers (2024-06-05T04:38:45Z) - HiT: Building Mapping with Hierarchical Transformers [43.31497052507252]
We propose a simple and novel building mapping method with Hierarchical Transformers, called HiT.
HiT builds on a two-stage detection architecture by adding a polygon head parallel to classification and bounding box regression heads.
Our method achieves a new state-of-the-art in terms of instance segmentation and polygonal metrics compared with state-of-the-art methods.
arXiv Detail & Related papers (2023-09-18T10:24:25Z) - BiSVP: Building Footprint Extraction via Bidirectional Serialized Vertex
Prediction [43.61580149432732]
BiSVP is a refinement-free and end-to-end building footprint extraction method.
We propose a cross-scale feature fusion (CSFF) module to facilitate high resolution and rich semantic feature learning.
Our BiSVP outperforms state-of-the-art methods by considerable margins on three building instance segmentation benchmarks.
arXiv Detail & Related papers (2023-03-01T07:50:34Z) - PolyBuilding: Polygon Transformer for End-to-End Building Extraction [9.196604757138825]
PolyBuilding predicts vector representation of buildings from remote sensing images.
Model learns the relations among them and encodes context information from the image to predict the final set of building polygons.
It also achieves a new state-of-the-art in terms of pixel-level coverage, instance-level precision and recall, and geometry-level properties.
arXiv Detail & Related papers (2022-11-03T04:53:17Z) - Learning Local Displacements for Point Cloud Completion [93.54286830844134]
We propose a novel approach aimed at object and semantic scene completion from a partial scan represented as a 3D point cloud.
Our architecture relies on three novel layers that are used successively within an encoder-decoder structure.
We evaluate both architectures on object and indoor scene completion tasks, achieving state-of-the-art performance.
arXiv Detail & Related papers (2022-03-30T18:31:37Z) - Voxel-based Network for Shape Completion by Leveraging Edge Generation [76.23436070605348]
We develop a voxel-based network for point cloud completion by leveraging edge generation (VE-PCN)
We first embed point clouds into regular voxel grids, and then generate complete objects with the help of the hallucinated shape edges.
This decoupled architecture together with a multi-scale grid feature learning is able to generate more realistic on-surface details.
arXiv Detail & Related papers (2021-08-23T05:10:29Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
It is expensive and tedious to obtain large scale paired sparse-canned point sets for training from real scanned sparse data.
We propose a self-supervised point cloud upsampling network, named SPU-Net, to capture the inherent upsampling patterns of points lying on the underlying object surface.
We conduct various experiments on both synthetic and real-scanned datasets, and the results demonstrate that we achieve comparable performance to the state-of-the-art supervised methods.
arXiv Detail & Related papers (2020-12-08T14:14:09Z) - Cascaded Refinement Network for Point Cloud Completion with
Self-supervision [74.80746431691938]
We introduce a two-branch network for shape completion.
The first branch is a cascaded shape completion sub-network to synthesize complete objects.
The second branch is an auto-encoder to reconstruct the original partial input.
arXiv Detail & Related papers (2020-10-17T04:56:22Z) - Unsupervised Learning of Intrinsic Structural Representation Points [50.92621061405056]
Learning structures of 3D shapes is a fundamental problem in the field of computer graphics and geometry processing.
We present a simple yet interpretable unsupervised method for learning a new structural representation in the form of 3D structure points.
arXiv Detail & Related papers (2020-03-03T17:40:00Z) - Image Matching across Wide Baselines: From Paper to Practice [80.9424750998559]
We introduce a comprehensive benchmark for local features and robust estimation algorithms.
Our pipeline's modular structure allows easy integration, configuration, and combination of different methods.
We show that with proper settings, classical solutions may still outperform the perceived state of the art.
arXiv Detail & Related papers (2020-03-03T15:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.