AlphaPose: Whole-Body Regional Multi-Person Pose Estimation and Tracking
in Real-Time
- URL: http://arxiv.org/abs/2211.03375v1
- Date: Mon, 7 Nov 2022 09:15:38 GMT
- Title: AlphaPose: Whole-Body Regional Multi-Person Pose Estimation and Tracking
in Real-Time
- Authors: Hao-Shu Fang, Jiefeng Li, Hongyang Tang, Chao Xu, Haoyi Zhu, Yuliang
Xiu, Yong-Lu Li, Cewu Lu
- Abstract summary: We present AlphaPose, a system that can perform accurate whole-body pose estimation and tracking jointly while running in realtime.
We show a significant improvement over current state-of-the-art methods in both speed and accuracy on COCO-wholebody, COCO, PoseTrack, and our proposed Halpe-FullBody pose estimation dataset.
- Score: 47.19339667836196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate whole-body multi-person pose estimation and tracking is an important
yet challenging topic in computer vision. To capture the subtle actions of
humans for complex behavior analysis, whole-body pose estimation including the
face, body, hand and foot is essential over conventional body-only pose
estimation. In this paper, we present AlphaPose, a system that can perform
accurate whole-body pose estimation and tracking jointly while running in
realtime. To this end, we propose several new techniques: Symmetric Integral
Keypoint Regression (SIKR) for fast and fine localization, Parametric Pose
Non-Maximum-Suppression (P-NMS) for eliminating redundant human detections and
Pose Aware Identity Embedding for jointly pose estimation and tracking. During
training, we resort to Part-Guided Proposal Generator (PGPG) and multi-domain
knowledge distillation to further improve the accuracy. Our method is able to
localize whole-body keypoints accurately and tracks humans simultaneously given
inaccurate bounding boxes and redundant detections. We show a significant
improvement over current state-of-the-art methods in both speed and accuracy on
COCO-wholebody, COCO, PoseTrack, and our proposed Halpe-FullBody pose
estimation dataset. Our model, source codes and dataset are made publicly
available at https://github.com/MVIG-SJTU/AlphaPose.
Related papers
- CameraHMR: Aligning People with Perspective [54.05758012879385]
We address the challenge of accurate 3D human pose and shape estimation from monocular images.
Existing training datasets containing real images with pseudo ground truth (pGT) use SMPLify to fit SMPL to sparse 2D joint locations.
We make two contributions that improve pGT accuracy.
arXiv Detail & Related papers (2024-11-12T19:12:12Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - Improving Multi-Person Pose Tracking with A Confidence Network [37.84514614455588]
We develop a novel keypoint confidence network and a tracking pipeline to improve human detection and pose estimation.
Specifically, the keypoint confidence network is designed to determine whether each keypoint is occluded.
In the tracking pipeline, we propose the Bbox-revision module to reduce missing detection and the ID-retrieve module to correct lost trajectories.
arXiv Detail & Related papers (2023-10-29T06:36:27Z) - PoseExaminer: Automated Testing of Out-of-Distribution Robustness in
Human Pose and Shape Estimation [15.432266117706018]
We develop a simulator that can be controlled in a fine-grained manner to explore the manifold of images of human pose.
We introduce a learning-based testing method, termed PoseExaminer, that automatically diagnoses HPS algorithms.
We show that our PoseExaminer discovers a variety of limitations in current state-of-the-art models that are relevant in real-world scenarios.
arXiv Detail & Related papers (2023-03-13T17:58:54Z) - Kinematic-aware Hierarchical Attention Network for Human Pose Estimation
in Videos [17.831839654593452]
Previous-based human pose estimation methods have shown promising results by leveraging features of consecutive frames.
Most approaches compromise accuracy to jitter and do not comprehend the temporal aspects of human motion.
We design an architecture that exploits kinematic keypoint features.
arXiv Detail & Related papers (2022-11-29T01:46:11Z) - Dual networks based 3D Multi-Person Pose Estimation from Monocular Video [42.01876518017639]
Multi-person 3D pose estimation is more challenging than single pose estimation.
Existing top-down and bottom-up approaches to pose estimation suffer from detection errors.
We propose the integration of top-down and bottom-up approaches to exploit their strengths.
arXiv Detail & Related papers (2022-05-02T08:53:38Z) - Improving Robustness and Accuracy via Relative Information Encoding in
3D Human Pose Estimation [59.94032196768748]
We propose a relative information encoding method that yields positional and temporal enhanced representations.
Our method outperforms state-of-the-art methods on two public datasets.
arXiv Detail & Related papers (2021-07-29T14:12:19Z) - PoseDet: Fast Multi-Person Pose Estimation Using Pose Embedding [16.57620683425904]
This paper presents a novel framework PoseDet (Estimating Pose by Detection) to localize and associate body joints simultaneously.
We also propose the keypoint-aware pose embedding to represent an object in terms of the locations of its keypoints.
This simple framework achieves an unprecedented speed and a competitive accuracy on the COCO benchmark compared with state-of-the-art methods.
arXiv Detail & Related papers (2021-07-22T05:54:00Z) - Learning Dynamics via Graph Neural Networks for Human Pose Estimation
and Tracking [98.91894395941766]
We propose a novel online approach to learning the pose dynamics, which are independent of pose detections in current fame.
Specifically, we derive this prediction of dynamics through a graph neural network(GNN) that explicitly accounts for both spatial-temporal and visual information.
Experiments on PoseTrack 2017 and PoseTrack 2018 datasets demonstrate that the proposed method achieves results superior to the state of the art on both human pose estimation and tracking tasks.
arXiv Detail & Related papers (2021-06-07T16:36:50Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.