論文の概要: Justification of Recommender Systems Results: A Service-based Approach
- arxiv url: http://arxiv.org/abs/2211.03452v1
- Date: Mon, 7 Nov 2022 11:08:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 18:40:48.562752
- Title: Justification of Recommender Systems Results: A Service-based Approach
- Title(参考訳): Recommenderシステムの結果の正当性:サービスベースのアプローチ
- Authors: Noemi Mauro, Zhongli Filippo Hu and Liliana Ardissono
- Abstract要約: 本稿では,サービスモデルを用いて商品とのインタラクションのすべての段階に関するレビューから経験データを抽出する,新たな正当化手法を提案する。
ユーザスタディでは,提案手法を,推奨システムの結果の正当性を反映したベースラインと比較した。
我々のモデルは、好奇心のレベルが異なるユーザや、認知の必要度(NfC)の低いユーザによって、より高いインタフェース適合度と満足度の評価を受けた。
これらの知見は、推薦システムの結果を正当化するためのサービスモデルの導入を奨励するが、多様なインタラクションニーズに適合するパーソナライズ戦略の調査を推奨する。
- 参考スコア(独自算出の注目度): 4.640835690336653
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the increasing demand for predictable and accountable Artificial
Intelligence, the ability to explain or justify recommender systems results by
specifying how items are suggested, or why they are relevant, has become a
primary goal. However, current models do not explicitly represent the services
and actors that the user might encounter during the overall interaction with an
item, from its selection to its usage. Thus, they cannot assess their impact on
the user's experience. To address this issue, we propose a novel justification
approach that uses service models to (i) extract experience data from reviews
concerning all the stages of interaction with items, at different granularity
levels, and (ii) organize the justification of recommendations around those
stages. In a user study, we compared our approach with baselines reflecting the
state of the art in the justification of recommender systems results. The
participants evaluated the Perceived User Awareness Support provided by our
service-based justification models higher than the one offered by the
baselines. Moreover, our models received higher Interface Adequacy and
Satisfaction evaluations by users having different levels of Curiosity or low
Need for Cognition (NfC). Differently, high NfC participants preferred a direct
inspection of item reviews. These findings encourage the adoption of service
models to justify recommender systems results but suggest the investigation of
personalization strategies to suit diverse interaction needs.
- Abstract(参考訳): 予測可能で説明可能な人工知能の需要が高まる中、推奨システムの結果を説明するか正当化する能力が、アイテムの推奨方法や関連理由を特定することによって、主要な目標になってきた。
しかしながら、現在のモデルは、ユーザがアイテムとの全体的なインタラクション中に遭遇する可能性のあるサービスやアクターを、選択から使用まで明示的に表現していない。
したがって、ユーザエクスペリエンスへの影響を評価することはできない。
この問題に対処するため,サービスモデルを用いた新たな正当化アプローチを提案する。
(i)項目との相互作用の全段階、異なる粒度レベルでのレビューから経験データを抽出する。
(ii)これらの段階に関する勧告の正当化を整理する。
ユーザスタディでは,提案手法を,推奨システムの結果の正当性を反映したベースラインと比較した。
被験者は,ベースラインが提供するものよりもサービスベースの正当化モデルによって提供されるユーザ意識サポートを高く評価した。
さらに,CfC (Low Need for Cognition) やCfC (Low Need for Cognition) のレベルが異なるユーザに対して,インターフェースの妥当性と満足度を高く評価した。
異なる点として、高いNfC参加者は項目レビューの直接検査を好んだ。
これらの発見は、レコメンダシステムの結果を正当化するためにサービスモデルの採用を奨励するが、多様なインタラクションニーズに対応するパーソナライズ戦略の調査を示唆する。
関連論文リスト
- Review-based Recommender Systems: A Survey of Approaches, Challenges and Future Perspectives [11.835903510784735]
レビューベースのレコメンデータシステムは、この分野において重要なサブフィールドとして現れている。
本稿では,これらのシステムを分類し,その特徴,有効性,限界を解析し,最先端の手法を要約する。
本稿では,マルチモーダルデータの統合,複数基準評価情報の統合,倫理的考察など,今後の研究の方向性を提案する。
論文 参考訳(メタデータ) (2024-05-09T05:45:18Z) - Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs [57.16442740983528]
アドホック検索では、評価は暗黙のフィードバックを含むユーザーの行動に大きく依存する。
アノテータの会話知覚におけるターン評価におけるユーザフィードバックの役割はほとんど研究されていない。
本稿では,タスク指向対話システム(TDS)の評価が,ターンのフォローアップ発話を通じて提供されるユーザフィードバック,明示的あるいは暗黙的な評価にどのように影響するかに注目した。
論文 参考訳(メタデータ) (2024-04-19T16:45:50Z) - Interactive Explanation with Varying Level of Details in an Explainable
Scientific Literature Recommender System [0.5937476291232802]
本稿では,ユーザ中心の対話型説明モデルの採用を目標とし,さまざまな詳細レベルの説明を提供するとともに,ユーザのニーズや好みに基づいた説明の対話,制御,パーソナライズを可能にする。
本研究では,対話的説明の提供がユーザによる説明可能なRSの知覚に与える影響について質的研究を行った。
論文 参考訳(メタデータ) (2023-06-09T10:48:04Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
本稿では,異なるモデル選択基準の長所と短所を実験的に検討する。
選択戦略,候補推定器,比較に用いるデータの間には,複雑な相互作用があることを強調した。
論文 参考訳(メタデータ) (2023-02-06T16:55:37Z) - PARSRec: Explainable Personalized Attention-fused Recurrent Sequential
Recommendation Using Session Partial Actions [0.5801044612920815]
共通のパターンと個人の行動に依存したアーキテクチャを提案する。
Nielsen Consumer Panel データセットの実証結果は,提案手法が最大27.9%のパフォーマンス向上を達成したことを示唆している。
論文 参考訳(メタデータ) (2022-09-16T12:07:43Z) - Experiments on Generalizability of User-Oriented Fairness in Recommender
Systems [2.0932879442844476]
公正を意識した推薦システムは、異なるユーザーグループを同様に扱うことを目的としている。
本稿では,ユーザ中心の公平度を再評価するフレームワークを提案する。
我々は、ユーザ(NDCGなど)とアイテム(新規性、アイテムフェアネスなど)の両方から、フレームワークの再ランク付けによる最終的なレコメンデーションを評価する。
論文 参考訳(メタデータ) (2022-05-17T12:36:30Z) - Causal Disentanglement with Network Information for Debiased
Recommendations [34.698181166037564]
近年の研究では、因果的観点からレコメンデーターシステムをモデル化することで、デビアスを提案する。
この設定における重要な課題は、隠れた共同設立者を説明することだ。
我々は,ネットワーク情報(すなわち,ユーザ・ソーシャルおよびユーザ・イテムネットワーク)を活用して,隠れた共同創設者をよりよく近似することを提案する。
論文 参考訳(メタデータ) (2022-04-14T20:55:11Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
本稿では、レビューに基づく項目推薦のための感性認識型インタラクティブフュージョンネットワーク(SIFN)を提案する。
まず、BERTを介してユーザ/イテムレビューをエンコードし、各レビューのセマンティックな特徴を抽出する軽量な感情学習者を提案する。
そこで我々は,感情学習者が明示的な感情ラベルを用いて感情認識特徴を抽出するための感情予測タスクを提案する。
論文 参考訳(メタデータ) (2021-08-18T08:04:38Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
本稿では、予期せぬことを推奨プロセスに組み込んだ、新しいPersonalized Unexpected Recommender System(PURS)モデルについて述べる。
3つの実世界のデータセットに対する大規模なオフライン実験は、提案されたPURSモデルが最先端のベースラインアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2021-06-05T01:33:21Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
ユーザのアクティビティのレベルに応じて異なるグループのユーザを分析し、異なるグループ間での推奨パフォーマンスにバイアスが存在することを確認する。
不活性なユーザは、不活性なユーザのためのトレーニングデータが不十分なため、不満足なレコメンデーションを受けやすい可能性がある。
本稿では、知識グラフに対する説明可能な推奨という文脈で、この問題を緩和するために再ランク付けすることで、公平性に制約されたアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-03T05:04:38Z) - A Bayesian Approach to Conversational Recommendation Systems [60.12942570608859]
ベイズ的アプローチに基づく会話推薦システムを提案する。
エンターテイナーを予約するオンラインプラットフォームであるemphstagend.comへのこのアプローチの適用に基づくケーススタディについて論じる。
論文 参考訳(メタデータ) (2020-02-12T15:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。