Adaptive Contrastive Learning on Multimodal Transformer for Review
Helpfulness Predictions
- URL: http://arxiv.org/abs/2211.03524v1
- Date: Mon, 7 Nov 2022 13:05:56 GMT
- Title: Adaptive Contrastive Learning on Multimodal Transformer for Review
Helpfulness Predictions
- Authors: Thong Nguyen, Xiaobao Wu, Anh-Tuan Luu, Cong-Duy Nguyen, Zhen Hai,
Lidong Bing
- Abstract summary: We propose Multimodal Contrastive Learning for Multimodal Review Helpfulness Prediction (MRHP) problem.
In addition, we introduce Adaptive Weighting scheme for our contrastive learning approach.
Finally, we propose Multimodal Interaction module to address the unalignment nature of multimodal data.
- Score: 40.70793282367128
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Modern Review Helpfulness Prediction systems are dependent upon multiple
modalities, typically texts and images. Unfortunately, those contemporary
approaches pay scarce attention to polish representations of cross-modal
relations and tend to suffer from inferior optimization. This might cause harm
to model's predictions in numerous cases. To overcome the aforementioned
issues, we propose Multimodal Contrastive Learning for Multimodal Review
Helpfulness Prediction (MRHP) problem, concentrating on mutual information
between input modalities to explicitly elaborate cross-modal relations. In
addition, we introduce Adaptive Weighting scheme for our contrastive learning
approach in order to increase flexibility in optimization. Lastly, we propose
Multimodal Interaction module to address the unalignment nature of multimodal
data, thereby assisting the model in producing more reasonable multimodal
representations. Experimental results show that our method outperforms prior
baselines and achieves state-of-the-art results on two publicly available
benchmark datasets for MRHP problem.
Related papers
- On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
Multimodal learning is expected to boost model performance by integrating information from different modalities.
The widely-used joint training strategy leads to imbalanced and under-optimized uni-modal representations.
We propose On-the-fly Prediction Modulation (OPM) and On-the-fly Gradient Modulation (OGM) strategies to modulate the optimization of each modality.
arXiv Detail & Related papers (2024-10-15T13:15:50Z) - Enhancing Unimodal Latent Representations in Multimodal VAEs through Iterative Amortized Inference [20.761803725098005]
Multimodal variational autoencoders (VAEs) aim to capture shared latent representations by integrating information from different data modalities.
A significant challenge is accurately inferring representations from any subset of modalities without training an impractical number of inference networks for all possible modality combinations.
We introduce multimodal iterative amortized inference, an iterative refinement mechanism within the multimodal VAE framework.
arXiv Detail & Related papers (2024-10-15T08:49:38Z) - Multimodal Classification via Modal-Aware Interactive Enhancement [6.621745547882088]
We propose a novel multimodal learning method, called modal-aware interactive enhancement (MIE)
Specifically, we first utilize an optimization strategy based on sharpness aware minimization (SAM) to smooth the learning objective during the forward phase.
Then, with the help of the geometry property of SAM, we propose a gradient modification strategy to impose the influence between different modalities during the backward phase.
arXiv Detail & Related papers (2024-07-05T15:32:07Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - UniS-MMC: Multimodal Classification via Unimodality-supervised
Multimodal Contrastive Learning [29.237813880311943]
We propose a novel multimodal contrastive method to explore more reliable multimodal representations under the weak supervision of unimodal predicting.
Experimental results with fused features on two image-text classification benchmarks show that our proposed Unimodality-Supervised MultiModal Contrastive UniS-MMC learning method outperforms current state-of-the-art multimodal methods.
arXiv Detail & Related papers (2023-05-16T09:18:38Z) - Generalizing Multimodal Variational Methods to Sets [35.69942798534849]
This paper presents a novel variational method on sets called the Set Multimodal VAE (SMVAE) for learning a multimodal latent space.
By modeling the joint-modality posterior distribution directly, the proposed SMVAE learns to exchange information between multiple modalities and compensate for the drawbacks caused by factorization.
arXiv Detail & Related papers (2022-12-19T23:50:19Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
Correlation Information Bottleneck (CIB) seeks a tradeoff between compression and redundancy in representations.
We derive a tight theoretical upper bound for the mutual information between multimodal inputs and representations.
arXiv Detail & Related papers (2022-09-14T22:04:10Z) - Abstractive Sentence Summarization with Guidance of Selective Multimodal
Reference [3.505062507621494]
We propose a Multimodal Hierarchical Selective Transformer (mhsf) model that considers reciprocal relationships among modalities.
We evaluate the generalism of proposed mhsf model with the pre-trained+fine-tuning and fresh training strategies.
arXiv Detail & Related papers (2021-08-11T09:59:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.