論文の概要: Learning Causal Representations of Single Cells via Sparse Mechanism
Shift Modeling
- arxiv url: http://arxiv.org/abs/2211.03553v2
- Date: Tue, 8 Nov 2022 12:44:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 15:09:42.556455
- Title: Learning Causal Representations of Single Cells via Sparse Mechanism
Shift Modeling
- Title(参考訳): スパース機構シフトモデルによる単一細胞の因果表現の学習
- Authors: Romain Lopez, Nata\v{s}a Tagasovska, Stephen Ra, Kyunghyn Cho,
Jonathan K. Pritchard, Aviv Regev
- Abstract要約: 本稿では,各摂動を未知の,しかしスパースな,潜伏変数のサブセットを標的とした介入として扱う単一細胞遺伝子発現データの深部生成モデルを提案する。
これらの手法をシミュレーションした単一セルデータ上でベンチマークし、潜伏単位回復、因果的目標同定、領域外一般化における性能を評価する。
- 参考スコア(独自算出の注目度): 3.2435888122704037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Latent variable models such as the Variational Auto-Encoder (VAE) have become
a go-to tool for analyzing biological data, especially in the field of
single-cell genomics. One remaining challenge is the interpretability of latent
variables as biological processes that define a cell's identity. Outside of
biological applications, this problem is commonly referred to as learning
disentangled representations. Although several disentanglement-promoting
variants of the VAE were introduced, and applied to single-cell genomics data,
this task has been shown to be infeasible from independent and identically
distributed measurements, without additional structure. Instead, recent methods
propose to leverage non-stationary data, as well as the sparse mechanism shift
assumption in order to learn disentangled representations with a causal
semantic. Here, we extend the application of these methodological advances to
the analysis of single-cell genomics data with genetic or chemical
perturbations. More precisely, we propose a deep generative model of
single-cell gene expression data for which each perturbation is treated as a
stochastic intervention targeting an unknown, but sparse, subset of latent
variables. We benchmark these methods on simulated single-cell data to evaluate
their performance at latent units recovery, causal target identification and
out-of-domain generalization. Finally, we apply those approaches to two
real-world large-scale gene perturbation data sets and find that models that
exploit the sparse mechanism shift hypothesis surpass contemporary methods on a
transfer learning task. We implement our new model and benchmarks using the
scvi-tools library, and release it as open-source software at
\url{https://github.com/Genentech/sVAE}.
- Abstract(参考訳): 変分オートエンコーダ(VAE)のような潜在変数モデルは、特に単細胞ゲノミクスの分野において、生物学的データを解析するためのゴーツーツールとなっている。
残る課題の1つは、細胞のアイデンティティを定義する生物学的プロセスとしての潜在変数の解釈である。
生物学的応用以外では、この問題は一般に学習不整合表現と呼ばれる。
単細胞ゲノミクスデータに適用されたVAEの非絡み合い促進型がいくつか導入されているが、このタスクは追加構造を伴わずに独立かつ同一に分散された測定から不可能であることが示されている。
代わりに、近年の手法では、非定常データとスパース機構シフト仮定を利用して、因果意味を持つ非絡み合った表現を学習することを提案する。
本稿では、遺伝学的・化学的摂動を伴う単細胞ゲノミクスデータの解析への方法論的進歩の応用について述べる。
より正確には、各摂動を未知だがスパースな潜在変数のサブセットを対象とする確率的介入として扱う、単一細胞遺伝子発現データの深い生成モデルを提案する。
これらの手法を単細胞シミュレーションデータにベンチマークし,潜在ユニットのリカバリ,因果目標同定,ドメイン外一般化における性能評価を行った。
最後に,この手法を実世界の2つの大規模遺伝子摂動データセットに適用し,スパース機構シフト仮説を応用したモデルが,トランスファー学習タスクにおける現代手法を上回っていることを見出した。
scvi-toolsライブラリを使って新しいモデルとベンチマークを実装し、それをオープンソースソフトウェアとしてリリースする。
関連論文リスト
- Generating Multi-Modal and Multi-Attribute Single-Cell Counts with CFGen [76.02070962797794]
マルチモーダル単細胞数に対するフローベース条件生成モデルであるセルフロー・フォー・ジェネレーションを提案する。
本研究は, 新規な生成タスクを考慮に入れた上で, 重要な生物学的データ特性の回復性の向上を示唆するものである。
論文 参考訳(メタデータ) (2024-07-16T14:05:03Z) - Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
ゲノム配列に基づいて訓練されたブラックボックス深層学習モデルは、異なる遺伝子制御機構の結果を予測するのに優れている。
本稿では、遺伝的プログラミングを用いて、その意味的多様性に寄与する配列の摂動を進化させることによりデータセットを生成することを提案する。
論文 参考訳(メタデータ) (2024-07-03T10:31:30Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Modelling Cellular Perturbations with the Sparse Additive Mechanism
Shift Variational Autoencoder [6.352775857356592]
摂動モデルに対する合成性, 絡み合い, 解釈性を組み合わせたスパース加算機構シフト変分自動符号化器SAMS-VAEを提案する。
SAMS-VAEは、潜伏サンプルの潜伏状態を、潜伏介入効果のサンプル特異な変動と疎大なグローバル変数を捉えた局所潜伏変数の和としてモデル化する。
2つの一般的な単一セルシークエンシングデータセットを用いて,SAMS-VAEを定性的に評価した。
論文 参考訳(メタデータ) (2023-11-05T23:37:31Z) - Mixed Models with Multiple Instance Learning [51.440557223100164]
一般化線形混合モデル(GLMM)とMultiple Instance Learning(MIL)を統合するフレームワークであるMixMILを紹介する。
実験結果から,MixMILは単一セルデータセットにおいて既存のMILモデルより優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-04T16:42:42Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Conditionally Invariant Representation Learning for Disentangling
Cellular Heterogeneity [25.488181126364186]
本稿では,不必要な変数や乱れに条件付き不変な表現を学習するために,ドメインの可変性を活用する新しい手法を提案する。
単細胞ゲノム学におけるデータ統合など,生物の課題に対して本手法を適用した。
具体的には、提案手法は、対象のタスクと無関係なデータバイアスや興味の因果的説明から生物学的信号を解き放つのに役立つ。
論文 参考訳(メタデータ) (2023-07-02T12:52:41Z) - A biology-driven deep generative model for cell-type annotation in
cytometry [0.0]
Scyanはシングルセルサイトメトリーネットワークで,事前知識のみを用いて細胞タイプを自動的にアノテートする。
Scyanは、複数の公開データセット上の関連する最先端モデルよりも高速で解釈可能である。
さらに、Scyanはバッチ効果除去、デバーコーディング、人口発見など、いくつかの補完的なタスクを克服している。
論文 参考訳(メタデータ) (2022-08-11T10:50:44Z) - Inference of cell dynamics on perturbation data using adjoint
sensitivity [4.606583317143614]
データ駆動型細胞生物学のダイナミックモデルを用いて、目に見えない摂動に対する細胞の反応を予測することができる。
最近の研究は、明示的な相互作用項を持つ解釈可能なモデルの導出を実証した。
本研究は,このモデル推論手法の適用範囲を生物システムの多様性に拡張することを目的としている。
論文 参考訳(メタデータ) (2021-04-13T19:15:56Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。