Decentralized Complete Dictionary Learning via $\ell^{4}$-Norm
Maximization
- URL: http://arxiv.org/abs/2211.03628v1
- Date: Mon, 7 Nov 2022 15:36:08 GMT
- Title: Decentralized Complete Dictionary Learning via $\ell^{4}$-Norm
Maximization
- Authors: Qiheng Lu, Lixiang Lian
- Abstract summary: We propose a novel decentralized complete dictionary learning algorithm, which is based on $ell4$-norm.
Compared with existing decentralized dictionary learning algorithms, the novel algorithm has significant advantages in terms of per-iteration computational complexity, communication cost, and convergence rate in many scenarios.
- Score: 1.2995632804090198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of information technologies, centralized data
processing is subject to many limitations, such as computational overheads,
communication delays, and data privacy leakage. Decentralized data processing
over networked terminal nodes becomes an important technology in the era of big
data. Dictionary learning is a powerful representation learning method to
exploit the low-dimensional structure from the high-dimensional data. By
exploiting the low-dimensional structure, the storage and the processing
overhead of data can be effectively reduced. In this paper, we propose a novel
decentralized complete dictionary learning algorithm, which is based on
$\ell^{4}$-norm maximization. Compared with existing decentralized dictionary
learning algorithms, comprehensive numerical experiments show that the novel
algorithm has significant advantages in terms of per-iteration computational
complexity, communication cost, and convergence rate in many scenarios.
Moreover, a rigorous theoretical analysis shows that the dictionaries learned
by the proposed algorithm can converge to the one learned by a centralized
dictionary learning algorithm at a linear rate with high probability under
certain conditions.
Related papers
- Lightweight Conceptual Dictionary Learning for Text Classification Using Information Compression [15.460141768587663]
We propose a lightweight supervised dictionary learning framework for text classification based on data compression and representation.
We evaluate our algorithm's information-theoretic performance using information bottleneck principles and introduce the information plane area rank (IPAR) as a novel metric to quantify the information-theoretic performance.
arXiv Detail & Related papers (2024-04-28T10:11:52Z) - A Novel Neural Network-Based Federated Learning System for Imbalanced
and Non-IID Data [2.9642661320713555]
Most machine learning algorithms rely heavily on large amount of data which may be collected from various sources.
To combat this issue, researchers have introduced federated learning, where a prediction model is learnt by ensuring the privacy of data of clients data.
In this research, we propose a centralized, neural network-based federated learning system.
arXiv Detail & Related papers (2023-11-16T17:14:07Z) - Communication-Efficient Decentralized Federated Learning via One-Bit
Compressive Sensing [52.402550431781805]
Decentralized federated learning (DFL) has gained popularity due to its practicality across various applications.
Compared to the centralized version, training a shared model among a large number of nodes in DFL is more challenging.
We develop a novel algorithm based on the framework of the inexact alternating direction method (iADM)
arXiv Detail & Related papers (2023-08-31T12:22:40Z) - Simple Alternating Minimization Provably Solves Complete Dictionary
Learning [13.056764072568749]
This paper focuses on complete dictionary problem, where the goal is to reparametrize a set of given signals as linear combinations of atoms from a learned dictionary.
There are two main challenges faced by theoretical and practical dictionary learning: the lack of theoretical guarantees for practically-used algorithms, and poor scalability when dealing with huge-scale datasets.
arXiv Detail & Related papers (2022-10-23T18:30:45Z) - Communication-Efficient Adam-Type Algorithms for Distributed Data Mining [93.50424502011626]
We propose a class of novel distributed Adam-type algorithms (emphi.e., SketchedAMSGrad) utilizing sketching.
Our new algorithm achieves a fast convergence rate of $O(frac1sqrtnT + frac1(k/d)2 T)$ with the communication cost of $O(k log(d))$ at each iteration.
arXiv Detail & Related papers (2022-10-14T01:42:05Z) - Online Orthogonal Dictionary Learning Based on Frank-Wolfe Method [3.198144010381572]
Dictionary learning is a widely used unsupervised learning method in signal processing and machine learning.
The proposed scheme includes a novel problem formulation and an efficient online algorithm design with convergence analysis.
Experiments with synthetic data and real-world sensor readings demonstrate the effectiveness and efficiency of the proposed scheme.
arXiv Detail & Related papers (2021-03-02T05:49:23Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
Big data, including applications with high security requirements, are often collected and stored on multiple heterogeneous devices, such as mobile devices, drones and vehicles.
Due to the limitations of communication costs and security requirements, it is of paramount importance to extract information in a decentralized manner instead of aggregating data to a fusion center.
We consider the problem of learning model parameters in a multi-agent system with data locally processed via distributed edge nodes.
A class of mini-batch alternating direction method of multipliers (ADMM) algorithms is explored to develop the distributed learning model.
arXiv Detail & Related papers (2020-10-02T10:41:59Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
Homomorphic Encryption (HE) is receiving more and more attention recently for its capability to do computations over the encrypted field.
We propose a novel general distributed HE-based data mining framework towards one step of solving the scaling problem.
We verify the efficiency and effectiveness of our new framework by testing over various data mining algorithms and benchmark data-sets.
arXiv Detail & Related papers (2020-06-17T18:14:30Z) - Communication-Efficient Distributed Deep Learning: A Comprehensive
Survey [22.42450750097714]
We provide a comprehensive survey of the communication-efficient distributed training algorithms.
We first propose a taxonomy of data-parallel distributed training algorithms.
We then investigate state-of-the-art studies that address problems in these four dimensions.
arXiv Detail & Related papers (2020-03-10T05:42:44Z) - Quantized Decentralized Stochastic Learning over Directed Graphs [54.005946490293496]
We consider a decentralized learning problem where data points are distributed among computing nodes communicating over a directed graph.
As the model size gets large, decentralized learning faces a major bottleneck that is the communication load due to each node transmitting messages (model updates) to its neighbors.
We propose the quantized decentralized learning algorithm over directed graphs that is based on the push-sum algorithm in decentralized consensus optimization.
arXiv Detail & Related papers (2020-02-23T18:25:39Z) - Distributed Learning in the Non-Convex World: From Batch to Streaming
Data, and Beyond [73.03743482037378]
Distributed learning has become a critical direction of the massively connected world envisioned by many.
This article discusses four key elements of scalable distributed processing and real-time data computation problems.
Practical issues and future research will also be discussed.
arXiv Detail & Related papers (2020-01-14T14:11:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.