Lightweight Conceptual Dictionary Learning for Text Classification Using Information Compression
- URL: http://arxiv.org/abs/2405.01584v1
- Date: Sun, 28 Apr 2024 10:11:52 GMT
- Title: Lightweight Conceptual Dictionary Learning for Text Classification Using Information Compression
- Authors: Li Wan, Tansu Alpcan, Margreta Kuijper, Emanuele Viterbo,
- Abstract summary: We propose a lightweight supervised dictionary learning framework for text classification based on data compression and representation.
We evaluate our algorithm's information-theoretic performance using information bottleneck principles and introduce the information plane area rank (IPAR) as a novel metric to quantify the information-theoretic performance.
- Score: 15.460141768587663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel, lightweight supervised dictionary learning framework for text classification based on data compression and representation. This two-phase algorithm initially employs the Lempel-Ziv-Welch (LZW) algorithm to construct a dictionary from text datasets, focusing on the conceptual significance of dictionary elements. Subsequently, dictionaries are refined considering label data, optimizing dictionary atoms to enhance discriminative power based on mutual information and class distribution. This process generates discriminative numerical representations, facilitating the training of simple classifiers such as SVMs and neural networks. We evaluate our algorithm's information-theoretic performance using information bottleneck principles and introduce the information plane area rank (IPAR) as a novel metric to quantify the information-theoretic performance. Tested on six benchmark text datasets, our algorithm competes closely with top models, especially in limited-vocabulary contexts, using significantly fewer parameters. \review{Our algorithm closely matches top-performing models, deviating by only ~2\% on limited-vocabulary datasets, using just 10\% of their parameters. However, it falls short on diverse-vocabulary datasets, likely due to the LZW algorithm's constraints with low-repetition data. This contrast highlights its efficiency and limitations across different dataset types.
Related papers
- Towards Realistic Zero-Shot Classification via Self Structural Semantic
Alignment [53.2701026843921]
Large-scale pre-trained Vision Language Models (VLMs) have proven effective for zero-shot classification.
In this paper, we aim at a more challenging setting, Realistic Zero-Shot Classification, which assumes no annotation but instead a broad vocabulary.
We propose the Self Structural Semantic Alignment (S3A) framework, which extracts structural semantic information from unlabeled data while simultaneously self-learning.
arXiv Detail & Related papers (2023-08-24T17:56:46Z) - A Novel Ehanced Move Recognition Algorithm Based on Pre-trained Models
with Positional Embeddings [6.688643243555054]
The recognition of abstracts is crucial for effectively locating the content and clarifying the article.
This paper proposes a novel enhanced move recognition algorithm with an improved pre-trained model and a gated network with attention mechanism for unstructured abstracts of Chinese scientific and technological papers.
arXiv Detail & Related papers (2023-08-14T03:20:28Z) - M-Tuning: Prompt Tuning with Mitigated Label Bias in Open-Set Scenarios [103.6153593636399]
We propose a vision-language prompt tuning method with mitigated label bias (M-Tuning)
It introduces open words from the WordNet to extend the range of words forming the prompt texts from only closed-set label words to more, and thus prompts are tuned in a simulated open-set scenario.
Our method achieves the best performance on datasets with various scales, and extensive ablation studies also validate its effectiveness.
arXiv Detail & Related papers (2023-03-09T09:05:47Z) - Decentralized Complete Dictionary Learning via $\ell^{4}$-Norm
Maximization [1.2995632804090198]
We propose a novel decentralized complete dictionary learning algorithm, which is based on $ell4$-norm.
Compared with existing decentralized dictionary learning algorithms, the novel algorithm has significant advantages in terms of per-iteration computational complexity, communication cost, and convergence rate in many scenarios.
arXiv Detail & Related papers (2022-11-07T15:36:08Z) - Word Embeddings and Validity Indexes in Fuzzy Clustering [5.063728016437489]
fuzzy-based analysis of various vector representations of words, i.e., word embeddings.
We use two popular fuzzy clustering algorithms on count-based word embeddings, with different methods and dimensionality.
We evaluate results of experiments with various clustering validity indexes to compare different algorithm variation with different embeddings accuracy.
arXiv Detail & Related papers (2022-04-26T18:08:19Z) - Speaker Embedding-aware Neural Diarization: a Novel Framework for
Overlapped Speech Diarization in the Meeting Scenario [51.5031673695118]
We reformulate overlapped speech diarization as a single-label prediction problem.
We propose the speaker embedding-aware neural diarization (SEND) system.
arXiv Detail & Related papers (2022-03-18T06:40:39Z) - Learning with Neighbor Consistency for Noisy Labels [69.83857578836769]
We present a method for learning from noisy labels that leverages similarities between training examples in feature space.
We evaluate our method on datasets evaluating both synthetic (CIFAR-10, CIFAR-100) and realistic (mini-WebVision, Clothing1M, mini-ImageNet-Red) noise.
arXiv Detail & Related papers (2022-02-04T15:46:27Z) - Dominant Set-based Active Learning for Text Classification and its
Application to Online Social Media [0.0]
We present a novel pool-based active learning method for the training of large unlabeled corpus with minimum annotation cost.
Our proposed method does not have any parameters to be tuned, making it dataset-independent.
Our method achieves a higher performance in comparison to the state-of-the-art active learning strategies.
arXiv Detail & Related papers (2022-01-28T19:19:03Z) - Discriminative Dictionary Learning based on Statistical Methods [0.0]
Sparse Representation (SR) of signals or data has a well founded theory with rigorous mathematical error bounds and proofs.
Training dictionaries such that they represent each class of signals with minimal loss is called Dictionary Learning (DL)
MOD and K-SVD have been successfully used in reconstruction based applications in image processing like image "denoising", "inpainting"
arXiv Detail & Related papers (2021-11-17T10:45:10Z) - Hierarchical Heterogeneous Graph Representation Learning for Short Text
Classification [60.233529926965836]
We propose a new method called SHINE, which is based on graph neural network (GNN) for short text classification.
First, we model the short text dataset as a hierarchical heterogeneous graph consisting of word-level component graphs.
Then, we dynamically learn a short document graph that facilitates effective label propagation among similar short texts.
arXiv Detail & Related papers (2021-10-30T05:33:05Z) - Accelerating Text Mining Using Domain-Specific Stop Word Lists [57.76576681191192]
We present a novel approach for the automatic extraction of domain-specific words called the hyperplane-based approach.
The hyperplane-based approach can significantly reduce text dimensionality by eliminating irrelevant features.
Results indicate that the hyperplane-based approach can reduce the dimensionality of the corpus by 90% and outperforms mutual information.
arXiv Detail & Related papers (2020-11-18T17:42:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.