論文の概要: Scale Invariant Privacy Preserving Video via Wavelet Decomposition
- arxiv url: http://arxiv.org/abs/2211.03690v1
- Date: Mon, 7 Nov 2022 17:03:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 18:31:09.981004
- Title: Scale Invariant Privacy Preserving Video via Wavelet Decomposition
- Title(参考訳): ウェーブレット分解によるスケール不変プライバシー保護ビデオ
- Authors: Chengkai Yu and Charles Fleming and Hai-Ning Liang
- Abstract要約: プライバシー保護ビデオのための提案された解決策は、生成されたビデオから識別された情報を除去することである。
いくつかのアルゴリズムが提案されているが、いずれもスケールの問題に悩まされている。
本稿ではウェーブレット分解に基づくスケール不変法を提案する。
- 参考スコア(独自算出の注目度): 9.864435932969549
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video surveillance has become ubiquitous in the modern world. Mobile devices,
surveillance cameras, and IoT devices, all can record video that can violate
our privacy. One proposed solution for this is privacy-preserving video, which
removes identifying information from the video as it is produced. Several
algorithms for this have been proposed, but all of them suffer from scale
issues: in order to sufficiently anonymize near-camera objects, distant objects
become unidentifiable. In this paper, we propose a scale-invariant method,
based on wavelet decomposition.
- Abstract(参考訳): 現代の世界ではビデオ監視が普及している。
モバイルデバイス、監視カメラ、iotデバイスはすべて、プライバシーを侵害する可能性のあるビデオを記録できます。
提案されている解決策の1つは、プライバシ保存ビデオであり、作成中のビデオから識別情報を削除できる。
いくつかのアルゴリズムが提案されているが、これらは全てスケールの問題に悩まされている。
本稿では,ウェーブレット分解に基づくスケール不変法を提案する。
関連論文リスト
- PV-VTT: A Privacy-Centric Dataset for Mission-Specific Anomaly Detection and Natural Language Interpretation [5.0923114224599555]
プライバシー侵害の特定を目的とした,ユニークなマルチモーダルデータセットであるPV-VTT(Privacy Violation Video To Text)を提案する。
PV-VTTは、シナリオ内のビデオとテキストの両方に詳細なアノテーションを提供する。
このプライバシー重視のアプローチにより、研究者はこのデータセットを、保護された機密性を保護しながら使用することができる。
論文 参考訳(メタデータ) (2024-10-30T01:02:20Z) - CausalVE: Face Video Privacy Encryption via Causal Video Prediction [13.577971999457164]
ビデオやライブストリーミングのWebサイトの普及に伴い、公開対面のビデオ配信とインタラクションは、プライバシー上のリスクを増大させる。
これらの欠点に対処するニューラルネットワークフレームワークCausalVEを提案する。
我々のフレームワークは、公開ビデオの拡散において優れたセキュリティを有し、定性的、量的、視覚的な観点から最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-09-28T10:34:22Z) - Large-capacity and Flexible Video Steganography via Invertible Neural
Network [60.34588692333379]
大容量フレキシブルビデオステレオグラフィーネットワーク(LF-VSN)を提案する。
大容量のために、単一の可逆ニューラルネットワーク(INN)を介して複数のビデオの隠蔽と回復を行う可逆パイプラインを提案する。
フレキシビリティのために、異なる受信機が特定の秘密映像を同じカバービデオから特定のキーを介して復元できるキー制御可能なスキームを提案する。
論文 参考訳(メタデータ) (2023-04-24T17:51:35Z) - Audio-Visual Person-of-Interest DeepFake Detection [77.04789677645682]
本研究の目的は、現実世界で遭遇する様々な操作方法やシナリオに対処できるディープフェイク検出器を提案することである。
我々は、対照的な学習パラダイムを活用して、各アイデンティティに対して最も識別しやすい、移動面と音声セグメントの埋め込みを学習する。
本手法は,シングルモダリティ(オーディオのみ,ビデオのみ)とマルチモダリティ(オーディオビデオ)の両方を検出でき,低品質・低画質ビデオに対して堅牢である。
論文 参考訳(メタデータ) (2022-04-06T20:51:40Z) - SPAct: Self-supervised Privacy Preservation for Action Recognition [73.79886509500409]
アクション認識におけるプライバシー漏洩を緩和するための既存のアプローチは、ビデオデータセットのアクションラベルとともに、プライバシラベルを必要とする。
自己教師付き学習(SSL)の最近の進歩は、未ラベルデータの未発見の可能性を解き放ちつつある。
本稿では、プライバシーラベルを必要とせず、自己管理的な方法で、入力ビデオからプライバシー情報を除去する新しいトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T02:56:40Z) - Deep Learning Approach Protecting Privacy in Camera-Based Critical
Applications [57.93313928219855]
カメラベースシステムにおけるプライバシー保護のためのディープラーニングアプローチを提案する。
我々の手法は、アプリケーションで必要とされない直感に基づいて、正当性(視覚的に顕著な)と非正則性(非正則性)を区別する。
論文 参考訳(メタデータ) (2021-10-04T19:16:27Z) - Robust Privacy-Preserving Motion Detection and Object Tracking in
Encrypted Streaming Video [39.453548972987015]
本稿では,暗号化された監視ビデオのビットストリームに対して,効率的かつ堅牢なプライバシー保護動作検出と複数物体追跡手法を提案する。
提案手法は, 暗号化・圧縮された領域における既存の作業と比較して, 最高の検出・追跡性能を実現する。
我々の手法は、カメラの動き/ジッタ、動的背景、影など、様々な課題を伴う複雑な監視シナリオで効果的に利用することができる。
論文 参考訳(メタデータ) (2021-08-30T11:58:19Z) - Privacy-sensitive Objects Pixelation for Live Video Streaming [52.83247667841588]
ライブビデオストリーミング中に自動的にパーソナルプライバシフィルタリングを行うための新しいPrivacy-sensitive Objects Pixelation(PsOP)フレームワークを提案する。
psopは、あらゆるプライバシーに敏感なオブジェクトのピクセル化に拡張可能です。
ストリーミング映像データを用いた実験では, ピクセル化精度の向上に加えて, プライバシーに敏感な物体のピクセル化において, PsOP が過剰なピクセル化比を大幅に削減できることが示された。
論文 参考訳(メタデータ) (2021-01-03T11:07:23Z) - Video Camera Identification from Sensor Pattern Noise with a Constrained
ConvNet [7.229968041355052]
本稿では,ビデオフレームから抽出したカメラ固有のノイズパターンに基づいて,映像のソースカメラを識別する手法を提案する。
本システムは,映像フレームを個別に分類し,多数決によりソースカメラの識別を行うように設計されている。
この研究は、子どもの性的虐待に対する法医学に焦点を当てたEUが支援するプロジェクト4NSEEKの一部です。
論文 参考訳(メタデータ) (2020-12-11T12:17:30Z) - The UU-Net: Reversible Face De-Identification for Visual Surveillance
Video Footage [0.0]
低解像度映像データに対する可逆顔識別法を提案する。
我々のソリューションは、データ保護規則を満たすリアルな非識別ストリームを生成することができる。
提案手法はランドマークフリーであり、条件付き生成対向ネットワークを用いて合成顔を生成する。
論文 参考訳(メタデータ) (2020-07-08T16:34:25Z) - TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting [107.39743751292028]
TransMoMoは、ソースビデオ中の人の動きを、ターゲットの別のビデオに現実的に転送することができる。
動き, 構造, ビューアングルを含む3つの要因の不変性を利用する。
本研究では,最先端手法に対する提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2020-03-31T17:49:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。