AskewSGD : An Annealed interval-constrained Optimisation method to train
Quantized Neural Networks
- URL: http://arxiv.org/abs/2211.03741v1
- Date: Mon, 7 Nov 2022 18:13:44 GMT
- Title: AskewSGD : An Annealed interval-constrained Optimisation method to train
Quantized Neural Networks
- Authors: Louis Leconte, Sholom Schechtman, Eric Moulines
- Abstract summary: We develop a new algorithm, Annealed Skewed SGD - AskewSGD - for training deep neural networks (DNNs) with quantized weights.
Unlike algorithms with active sets and feasible directions, AskewSGD avoids projections or optimization under the entire feasible set.
Experimental results show that the AskewSGD algorithm performs better than or on par with state of the art methods in classical benchmarks.
- Score: 12.229154524476405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we develop a new algorithm, Annealed Skewed SGD - AskewSGD -
for training deep neural networks (DNNs) with quantized weights. First, we
formulate the training of quantized neural networks (QNNs) as a smoothed
sequence of interval-constrained optimization problems. Then, we propose a new
first-order stochastic method, AskewSGD, to solve each constrained optimization
subproblem. Unlike algorithms with active sets and feasible directions,
AskewSGD avoids projections or optimization under the entire feasible set and
allows iterates that are infeasible. The numerical complexity of AskewSGD is
comparable to existing approaches for training QNNs, such as the
straight-through gradient estimator used in BinaryConnect, or other state of
the art methods (ProxQuant, LUQ). We establish convergence guarantees for
AskewSGD (under general assumptions for the objective function). Experimental
results show that the AskewSGD algorithm performs better than or on par with
state of the art methods in classical benchmarks.
Related papers
- Concurrent Training and Layer Pruning of Deep Neural Networks [0.0]
We propose an algorithm capable of identifying and eliminating irrelevant layers of a neural network during the early stages of training.
We employ a structure using residual connections around nonlinear network sections that allow the flow of information through the network once a nonlinear section is pruned.
arXiv Detail & Related papers (2024-06-06T23:19:57Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - Unfolded proximal neural networks for robust image Gaussian denoising [7.018591019975253]
We propose a unified framework to build PNNs for the Gaussian denoising task, based on both the dual-FB and the primal-dual Chambolle-Pock algorithms.
We also show that accelerated versions of these algorithms enable skip connections in the associated NN layers.
arXiv Detail & Related papers (2023-08-06T15:32:16Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - An Inexact Augmented Lagrangian Algorithm for Training Leaky ReLU Neural
Network with Group Sparsity [13.27709100571336]
A leaky ReLU network with a group regularization term has been widely used in the recent years.
We show that there is a lack of approaches to compute a stationary point deterministically.
We propose an inexact augmented Lagrangian algorithm for solving the new model.
arXiv Detail & Related papers (2022-05-11T11:53:15Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - A Dynamical View on Optimization Algorithms of Overparameterized Neural
Networks [23.038631072178735]
We consider a broad class of optimization algorithms that are commonly used in practice.
As a consequence, we can leverage the convergence behavior of neural networks.
We believe our approach can also be extended to other optimization algorithms and network theory.
arXiv Detail & Related papers (2020-10-25T17:10:22Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Deep Neural Network Learning with Second-Order Optimizers -- a Practical
Study with a Stochastic Quasi-Gauss-Newton Method [0.0]
We introduce and study a second-order quasi-Gauss-Newton (SQGN) optimization method that combines ideas from quasi-Newton methods, Gauss-Newton methods, and variance reduction to address this problem.
We discuss the implementation of SQGN with benchmark, and we compare its convergence and computational performance to selected first-order methods.
arXiv Detail & Related papers (2020-04-06T23:41:41Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.