Causal Discovery in Linear Latent Variable Models Subject to Measurement
Error
- URL: http://arxiv.org/abs/2211.03984v1
- Date: Tue, 8 Nov 2022 03:43:14 GMT
- Title: Causal Discovery in Linear Latent Variable Models Subject to Measurement
Error
- Authors: Yuqin Yang, AmirEmad Ghassami, Mohamed Nafea, Negar Kiyavash, Kun
Zhang, Ilya Shpitser
- Abstract summary: We focus on causal discovery in the presence of measurement error in linear systems.
We demonstrate a surprising connection between this problem and causal discovery in the presence of unobserved parentless causes.
- Score: 29.78435955758185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We focus on causal discovery in the presence of measurement error in linear
systems where the mixing matrix, i.e., the matrix indicating the independent
exogenous noise terms pertaining to the observed variables, is identified up to
permutation and scaling of the columns. We demonstrate a somewhat surprising
connection between this problem and causal discovery in the presence of
unobserved parentless causes, in the sense that there is a mapping, given by
the mixing matrix, between the underlying models to be inferred in these
problems. Consequently, any identifiability result based on the mixing matrix
for one model translates to an identifiability result for the other model. We
characterize to what extent the causal models can be identified under a
two-part faithfulness assumption. Under only the first part of the assumption
(corresponding to the conventional definition of faithfulness), the structure
can be learned up to the causal ordering among an ordered grouping of the
variables but not all the edges across the groups can be identified. We further
show that if both parts of the faithfulness assumption are imposed, the
structure can be learned up to a more refined ordered grouping. As a result of
this refinement, for the latent variable model with unobserved parentless
causes, the structure can be identified. Based on our theoretical results, we
propose causal structure learning methods for both models, and evaluate their
performance on synthetic data.
Related papers
- Causal Discovery in Linear Models with Unobserved Variables and Measurement Error [26.72594853233639]
The presence of unobserved common causes and the presence of measurement error are two of the most limiting challenges in the task of causal structure learning.
We study the problem of causal discovery in systems where these two challenges can be present simultaneously.
arXiv Detail & Related papers (2024-07-28T08:26:56Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Linear Causal Disentanglement via Interventions [8.444187296409051]
Causal disentanglement seeks a representation of data involving latent variables that relate to one another via a causal model.
We study observed variables that are a linear transformation of a linear latent causal model.
arXiv Detail & Related papers (2022-11-29T18:43:42Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
We find that transitivity acts as a key role in impeding the identifiability of latent causal representations.
Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them.
arXiv Detail & Related papers (2022-08-30T11:12:59Z) - Causal Discovery in Linear Structural Causal Models with Deterministic
Relations [27.06618125828978]
We focus on the task of causal discovery form observational data.
We derive a set of necessary and sufficient conditions for unique identifiability of the causal structure.
arXiv Detail & Related papers (2021-10-30T21:32:42Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z) - A Critical View of the Structural Causal Model [89.43277111586258]
We show that one can identify the cause and the effect without considering their interaction at all.
We propose a new adversarial training method that mimics the disentangled structure of the causal model.
Our multidimensional method outperforms the literature methods on both synthetic and real world datasets.
arXiv Detail & Related papers (2020-02-23T22:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.