論文の概要: Does an ensemble of GANs lead to better performance when training
segmentation networks with synthetic images?
- arxiv url: http://arxiv.org/abs/2211.04086v1
- Date: Tue, 8 Nov 2022 08:35:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 17:04:39.315289
- Title: Does an ensemble of GANs lead to better performance when training
segmentation networks with synthetic images?
- Title(参考訳): GANのアンサンブルは、合成画像を用いたセグメンテーションネットワークのトレーニングにおいて、より良いパフォーマンスをもたらすか?
- Authors: M{\aa}ns Larsson, Muhammad Usman Akbar, Anders Eklund
- Abstract要約: 深層ネットワークの訓練に合成画像を用いると,実画像に比べて性能が悪くなることが多い。
ここでは、単一のGANではなく10GANのアンサンブルから合成画像とアノテーションを使用することで、実検画像のDiceスコアが4.7%から14.0%に向上することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large annotated datasets are required to train segmentation networks. In
medical imaging, it is often difficult, time consuming and expensive to create
such datasets, and it may also be difficult to share these datasets with other
researchers. Different AI models can today generate very realistic synthetic
images, which can potentially be openly shared as they do not belong to
specific persons. However, recent work has shown that using synthetic images
for training deep networks often leads to worse performance compared to using
real images. Here we demonstrate that using synthetic images and annotations
from an ensemble of 10 GANs, instead of from a single GAN, increases the Dice
score on real test images with 4.7 % to 14.0 % on specific classes.
- Abstract(参考訳): セグメントネットワークのトレーニングには大規模なアノテートデータセットが必要である。
医用画像では、このようなデータセットを作成するのに時間がかかり、費用がかかることが多いため、これらのデータセットを他の研究者と共有することは困難である。
異なるaiモデルは、現在非常に現実的な合成画像を生成することができる。
しかし、近年の研究では、ディープネットワークのトレーニングに合成画像を使用すると、実際の画像よりもパフォーマンスが悪くなることが示されている。
ここでは,単一のganから10ganのアンサンブルを用いた合成画像とアノテーションを用いて,実際のテスト画像のサイススコアを4.7 %から14.0 %に増加させることを示す。
関連論文リスト
- Data-Efficient Generation for Dataset Distillation [12.106527496044473]
ラベル付きリアルな合成画像を生成する条件付き潜時拡散モデルを訓練する。
我々は,少数の合成画像のみを用いてモデルを効果的に訓練し,大規模な実検体で評価できることを実証した。
論文 参考訳(メタデータ) (2024-09-05T22:31:53Z) - Improving the Effectiveness of Deep Generative Data [5.856292656853396]
下流の画像処理タスクのための純粋合成画像のモデルを訓練すると、実際のデータに対するトレーニングに比べ、望ましくない性能低下が生じる。
本稿では,この現象に寄与する要因を記述した新しい分類法を提案し,CIFAR-10データセットを用いて検討する。
本手法は,合成データと合成データの混合による学習と合成データのみの学習において,下流分類タスクのベースラインに優れる。
論文 参考訳(メタデータ) (2023-11-07T12:57:58Z) - FreeMask: Synthetic Images with Dense Annotations Make Stronger
Segmentation Models [62.009002395326384]
FreeMaskは、生成モデルからの合成画像を利用して、データ収集とアノテーション手順の負担を軽減する。
まず、現実的なデータセットによって提供されるセマンティックマスクに条件付けされた豊富な訓練画像を合成する。
本研究では,実画像との協調訓練や,実画像の事前学習による合成画像の役割について検討する。
論文 参考訳(メタデータ) (2023-10-23T17:57:27Z) - DatasetDM: Synthesizing Data with Perception Annotations Using Diffusion
Models [61.906934570771256]
多様な合成画像や知覚アノテーションを生成できる汎用データセット生成モデルを提案する。
本手法は,事前学習した拡散モデルに基づいて,テキスト誘導画像合成を知覚データ生成に拡張する。
拡散モデルのリッチ潜時コードはデコーダモジュールを用いて正確な認識アノテーションとして効果的に復号できることを示す。
論文 参考訳(メタデータ) (2023-08-11T14:38:11Z) - Joint one-sided synthetic unpaired image translation and segmentation
for colorectal cancer prevention [16.356954231068077]
我々は3D技術と生成対向ネットワークを組み合わせたリアルな合成画像を作成する。
CUT-segは,分割モデルと生成モデルとを共同で訓練し,現実的な画像を生成する共同訓練である。
この研究の一環として、20000のリアルな大腸画像を含む完全に合成されたデータセットであるSynth-Colonをリリースする。
論文 参考訳(メタデータ) (2023-07-20T22:09:04Z) - Brain tumor segmentation using synthetic MR images -- A comparison of
GANs and diffusion models [0.0]
現在、GAN(Generative Adversarial Network)や拡散モデルのような生成AIモデルは、非常に現実的な合成画像を生成することができる。
合成画像に基づいてトレーニングされたセグメンテーションネットワークは、実画像を用いたトレーニングにおいて、Diceスコアの80%から90%のDiceスコアに達することを示す。
我々の結論は、医用画像の共有は実際の画像の共有に有効な選択肢であるが、さらなる作業が必要であるということだ。
論文 参考訳(メタデータ) (2023-06-05T15:56:30Z) - Synthetic Data for Object Classification in Industrial Applications [53.180678723280145]
オブジェクト分類では、オブジェクトごとに、異なる条件下で、多数の画像を取得することは必ずしも不可能である。
本研究は,学習データセット内の限られたデータに対処するゲームエンジンを用いた人工画像の作成について検討する。
論文 参考訳(メタデータ) (2022-12-09T11:43:04Z) - A Shared Representation for Photorealistic Driving Simulators [83.5985178314263]
本稿では、識別器アーキテクチャを再考することにより、生成画像の品質を向上させることを提案する。
シーンセグメンテーションマップや人体ポーズといったセマンティックインプットによって画像が生成されるという問題に焦点が当てられている。
我々は,意味的セグメンテーション,コンテンツ再構成,および粗い粒度の逆解析を行うのに十分な情報をエンコードする,共有潜在表現を学習することを目指している。
論文 参考訳(メタデータ) (2021-12-09T18:59:21Z) - Ensembles of GANs for synthetic training data generation [7.835101177261939]
トレーニングデータ不足は、ほとんどのディープラーニングプラクティスにとって大きなボトルネックです。
本研究は,gans(generative adversarial networks)が生成した合成画像のトレーニングデータとしての利用について検討する。
論文 参考訳(メタデータ) (2021-04-23T19:38:48Z) - Leveraging Self-Supervision for Cross-Domain Crowd Counting [71.75102529797549]
混雑したシーンで人をカウントするための最先端の方法は、群衆密度を推定するために深いネットワークに依存します。
われわれのネットワークは、通常の画像から逆さまの実際の画像を認識できるように訓練し、その不確実性を予測する能力を組み込む。
このアルゴリズムは、推論時に余分な計算をせずに、最先端のクロスドメイン群をカウントするアルゴリズムを一貫して上回る。
論文 参考訳(メタデータ) (2021-03-30T12:37:55Z) - Syn2Real Transfer Learning for Image Deraining using Gaussian Processes [92.15895515035795]
CNNに基づく画像デライニング手法は,再現誤差や視覚的品質の点で優れた性能を発揮している。
実世界の完全ラベル付き画像デライニングデータセットを取得する上での課題により、既存の手法は合成されたデータのみに基づいて訓練される。
本稿では,ガウス過程に基づく半教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-10T00:33:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。