A Penalty-Based Method for Communication-Efficient Decentralized Bilevel Programming
- URL: http://arxiv.org/abs/2211.04088v4
- Date: Thu, 10 Oct 2024 08:05:15 GMT
- Title: A Penalty-Based Method for Communication-Efficient Decentralized Bilevel Programming
- Authors: Parvin Nazari, Ahmad Mousavi, Davoud Ataee Tarzanagh, George Michailidis,
- Abstract summary: This paper introduces a penalty function-based decentralized algorithm for solving bilevel programming problems over a decentralized network.
A key feature of the proposed algorithm is the estimation of the hyper-gradient of the penalty function.
Our theoretical framework ensures non-asymptotic convergence to the optimal solution of the original problem under various convexity conditions.
- Score: 14.35928967799696
- License:
- Abstract: Bilevel programming has recently received attention in the literature due to its wide range of applications, including reinforcement learning and hyper-parameter optimization. However, it is widely assumed that the underlying bilevel optimization problem is solved either by a single machine or, in the case of multiple machines connected in a star-shaped network, i.e., in a federated learning setting. The latter approach suffers from a high communication cost on the central node (e.g., parameter server). Hence, there is an interest in developing methods that solve bilevel optimization problems in a communication-efficient, decentralized manner. To that end, this paper introduces a penalty function-based decentralized algorithm with theoretical guarantees for this class of optimization problems. Specifically, a distributed alternating gradient-type algorithm for solving consensus bilevel programming over a decentralized network is developed. A key feature of the proposed algorithm is the estimation of the hyper-gradient of the penalty function through decentralized computation of matrix-vector products and a few vector communications. The estimation is integrated into an alternating algorithm for solving the penalized reformulation of the bilevel optimization problem. Under appropriate step sizes and penalty parameters, our theoretical framework ensures non-asymptotic convergence to the optimal solution of the original problem under various convexity conditions. Our theoretical result highlights improvements in the iteration complexity of decentralized bilevel optimization, all while making efficient use of vector communication. Empirical results demonstrate that the proposed method performs well in real-world settings.
Related papers
- Lower Bounds and Optimal Algorithms for Non-Smooth Convex Decentralized Optimization over Time-Varying Networks [57.24087627267086]
We consider the task of minimizing the sum of convex functions stored in a decentralized manner across the nodes of a communication network.
Lower bounds on the number of decentralized communications and (sub)gradient computations required to solve the problem have been established.
We develop the first optimal algorithm that matches these lower bounds and offers substantially improved theoretical performance compared to the existing state of the art.
arXiv Detail & Related papers (2024-05-28T10:28:45Z) - A Single-Loop Algorithm for Decentralized Bilevel Optimization [11.67135350286933]
We propose a novel single-loop algorithm for solving decentralized bilevel optimization with a strongly convex lower-level problem.
Our approach is a fully single-loop method that approximates the hypergradient using only two matrix-vector multiplications per iteration.
Our analysis demonstrates that the proposed algorithm achieves the best-known convergence rate for bilevel optimization algorithms.
arXiv Detail & Related papers (2023-11-15T13:29:49Z) - Adaptive Consensus: A network pruning approach for decentralized
optimization [0.5432724320036953]
We consider network-based decentralized optimization problems, where each node in the network possesses a local function.
The objective is to collectively attain a consensus solution that minimizes the sum of all the local functions.
We propose an adaptive randomized communication-efficient algorithmic framework that reduces the volume of communication.
arXiv Detail & Related papers (2023-09-06T00:28:10Z) - Decentralized Multi-Level Compositional Optimization Algorithms with Level-Independent Convergence Rate [26.676582181833584]
Decentralized multi-level optimization is challenging because of the multilevel structure and decentralized communication.
We develop two novel decentralized optimization algorithms to optimize the multi-level compositional problem.
arXiv Detail & Related papers (2023-06-06T00:23:28Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
Bilevel optimization has been applied to a wide variety of machine learning models.
Most existing algorithms restrict their single-machine setting so that they are incapable of handling distributed data.
We develop novel decentralized bilevel optimization algorithms based on a gradient tracking communication mechanism and two different gradients.
arXiv Detail & Related papers (2022-06-30T05:29:52Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
We propose a new approach, which convert the bilevel problem to an equivalent constrained optimization, and then the primal-dual algorithm can be used to solve the problem.
Such an approach enjoys a few advantages including (a) addresses the multiple inner minima challenge; (b) fully first-order efficiency without Jacobian computations.
arXiv Detail & Related papers (2022-03-01T18:20:01Z) - DESTRESS: Computation-Optimal and Communication-Efficient Decentralized
Nonconvex Finite-Sum Optimization [43.31016937305845]
Internet-of-things, networked sensing, autonomous systems and federated learning call for decentralized algorithms for finite-sum optimizations.
We develop DEcentralized STochastic REcurSive methodDESTRESS for non finite-sum optimization.
Detailed theoretical and numerical comparisons show that DESTRESS improves upon prior decentralized algorithms.
arXiv Detail & Related papers (2021-10-04T03:17:41Z) - Bilevel Optimization for Machine Learning: Algorithm Design and
Convergence Analysis [12.680169619392695]
This thesis provides a comprehensive convergence rate analysis for bilevel optimization algorithms.
For the problem-based formulation, we provide a convergence rate analysis for AID- and ITD-based bilevel algorithms.
We then develop acceleration bilevel algorithms, for which we provide shaper convergence analysis with relaxed assumptions.
arXiv Detail & Related papers (2021-07-31T22:05:47Z) - Enhanced Bilevel Optimization via Bregman Distance [104.96004056928474]
We propose a bilevel optimization method based on Bregman Bregman functions.
We also propose an accelerated version of SBiO-BreD method (ASBiO-BreD) by using the variance-reduced technique.
arXiv Detail & Related papers (2021-07-26T16:18:43Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.