Conciseness: An Overlooked Language Task
- URL: http://arxiv.org/abs/2211.04126v1
- Date: Tue, 8 Nov 2022 09:47:11 GMT
- Title: Conciseness: An Overlooked Language Task
- Authors: Felix Stahlberg, Aashish Kumar, Chris Alberti and Shankar Kumar
- Abstract summary: We define the task and show that it is different from related tasks such as summarization and simplification.
We demonstrate that conciseness is a difficult task for which zero-shot setups with large neural language models often do not perform well.
- Score: 11.940413163824887
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We report on novel investigations into training models that make sentences
concise. We define the task and show that it is different from related tasks
such as summarization and simplification. For evaluation, we release two test
sets, consisting of 2000 sentences each, that were annotated by two and five
human annotators, respectively. We demonstrate that conciseness is a difficult
task for which zero-shot setups with large neural language models often do not
perform well. Given the limitations of these approaches, we propose a synthetic
data generation method based on round-trip translations. Using this data to
either train Transformers from scratch or fine-tune T5 models yields our
strongest baselines that can be further improved by fine-tuning on an
artificial conciseness dataset that we derived from multi-annotator machine
translation test sets.
Related papers
- Limits of Transformer Language Models on Learning to Compose Algorithms [77.2443883991608]
We evaluate training LLaMA models and prompting GPT-4 and Gemini on four tasks demanding to learn a composition of several discrete sub-tasks.
Our results indicate that compositional learning in state-of-the-art Transformer language models is highly sample inefficient.
arXiv Detail & Related papers (2024-02-08T16:23:29Z) - Split and Rephrase with Large Language Models [2.499907423888049]
Split and Rephrase (SPRP) task consists in splitting complex sentences into a sequence of shorter grammatical sentences.
We evaluate large language models on the task, showing that they can provide large improvements over the state of the art on the main metrics.
arXiv Detail & Related papers (2023-12-18T10:16:37Z) - Effective Cross-Task Transfer Learning for Explainable Natural Language
Inference with T5 [50.574918785575655]
We compare sequential fine-tuning with a model for multi-task learning in the context of boosting performance on two tasks.
Our results show that while sequential multi-task learning can be tuned to be good at the first of two target tasks, it performs less well on the second and additionally struggles with overfitting.
arXiv Detail & Related papers (2022-10-31T13:26:08Z) - Turning Tables: Generating Examples from Semi-structured Tables for
Endowing Language Models with Reasoning Skills [32.55545292360155]
We propose to leverage semi-structured tables, and automatically generate at scale question-paragraph pairs.
We add a pre-training step over this synthetic data, which includes examples that require 16 different reasoning skills.
We show that our model, PReasM, substantially outperforms T5, a popular pre-trained encoder-decoder model.
arXiv Detail & Related papers (2021-07-15T11:37:14Z) - Consistency Regularization for Cross-Lingual Fine-Tuning [61.08704789561351]
We propose to improve cross-lingual fine-tuning with consistency regularization.
Specifically, we use example consistency regularization to penalize the prediction sensitivity to four types of data augmentations.
Experimental results on the XTREME benchmark show that our method significantly improves cross-lingual fine-tuning across various tasks.
arXiv Detail & Related papers (2021-06-15T15:35:44Z) - Few-shot learning through contextual data augmentation [74.20290390065475]
Machine translation models need to adapt to new data to maintain their performance over time.
We show that adaptation on the scale of one to five examples is possible.
Our model reports better accuracy scores than a reference system trained with on average 313 parallel examples.
arXiv Detail & Related papers (2021-03-31T09:05:43Z) - mT5: A massively multilingual pre-trained text-to-text transformer [60.0210636815514]
"Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on English-language NLP tasks.
We introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages.
arXiv Detail & Related papers (2020-10-22T17:58:14Z) - Exemplar-Controllable Paraphrasing and Translation using Bitext [57.92051459102902]
We adapt models from prior work to be able to learn solely from bilingual text (bitext)
Our single proposed model can perform four tasks: controlled paraphrase generation in both languages and controlled machine translation in both language directions.
arXiv Detail & Related papers (2020-10-12T17:02:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.