Limits of Transformer Language Models on Learning to Compose Algorithms
- URL: http://arxiv.org/abs/2402.05785v5
- Date: Tue, 05 Nov 2024 06:32:38 GMT
- Title: Limits of Transformer Language Models on Learning to Compose Algorithms
- Authors: Jonathan Thomm, Giacomo Camposampiero, Aleksandar Terzic, Michael Hersche, Bernhard Schölkopf, Abbas Rahimi,
- Abstract summary: We evaluate training LLaMA models and prompting GPT-4 and Gemini on four tasks demanding to learn a composition of several discrete sub-tasks.
Our results indicate that compositional learning in state-of-the-art Transformer language models is highly sample inefficient.
- Score: 77.2443883991608
- License:
- Abstract: We analyze the capabilities of Transformer language models in learning compositional discrete tasks. To this end, we evaluate training LLaMA models and prompting GPT-4 and Gemini on four tasks demanding to learn a composition of several discrete sub-tasks. In particular, we measure how well these models can reuse primitives observable in the sub-tasks to learn the composition task. Our results indicate that compositional learning in state-of-the-art Transformer language models is highly sample inefficient: LLaMA requires more data samples than relearning all sub-tasks from scratch to learn the compositional task; in-context prompting with few samples is unreliable and fails at executing the sub-tasks or correcting the errors in multi-round code generation. Further, by leveraging complexity theory, we support these findings with a theoretical analysis focused on the sample inefficiency of gradient descent in memorizing feedforward models. We open source our code at https://github.com/IBM/limitations-lm-algorithmic-compositional-learning.
Related papers
- Layer by Layer: Uncovering Where Multi-Task Learning Happens in Instruction-Tuned Large Language Models [22.676688441884465]
Fine-tuning pre-trained large language models (LLMs) on a diverse array of tasks has become a common approach for building models.
This study investigates the task-specific information encoded in pre-trained LLMs and the effects of instruction tuning on their representations.
arXiv Detail & Related papers (2024-10-25T23:38:28Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Understanding In-Context Learning in Transformers and LLMs by Learning
to Learn Discrete Functions [32.59746882017483]
We show that Transformers can learn to implement two distinct algorithms to solve a single task.
We also show that extant Large Language Models (LLMs) can compete with nearest-neighbor baselines on prediction tasks.
arXiv Detail & Related papers (2023-10-04T17:57:33Z) - On Conditional and Compositional Language Model Differentiable Prompting [75.76546041094436]
Prompts have been shown to be an effective method to adapt a frozen Pretrained Language Model (PLM) to perform well on downstream tasks.
We propose a new model, Prompt Production System (PRopS), which learns to transform task instructions or input metadata, into continuous prompts.
arXiv Detail & Related papers (2023-07-04T02:47:42Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
We unify encoder and decoder-based models into a single prefix-LM.
For learning methods, we explore the claim of a "free lunch" hypothesis.
For data distributions, the effect of a mixture distribution and multi-epoch training of programming and natural languages on model performance is explored.
arXiv Detail & Related papers (2023-05-03T17:55:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.