FLock: Defending Malicious Behaviors in Federated Learning with
Blockchain
- URL: http://arxiv.org/abs/2211.04344v1
- Date: Sat, 5 Nov 2022 06:14:44 GMT
- Title: FLock: Defending Malicious Behaviors in Federated Learning with
Blockchain
- Authors: Nanqing Dong and Jiahao Sun and Zhipeng Wang and Shuoying Zhang and
Shuhao Zheng
- Abstract summary: Federated learning (FL) is a promising way to allow multiple data owners (clients) to collaboratively train machine learning models.
We propose to use distributed ledger technology (DLT) to achieve FLock, a secure and reliable decentralized FL system built on blockchain.
- Score: 3.0111384920731545
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated learning (FL) is a promising way to allow multiple data owners
(clients) to collaboratively train machine learning models without compromising
data privacy. Yet, existing FL solutions usually rely on a centralized
aggregator for model weight aggregation, while assuming clients are honest.
Even if data privacy can still be preserved, the problem of single-point
failure and data poisoning attack from malicious clients remains unresolved. To
tackle this challenge, we propose to use distributed ledger technology (DLT) to
achieve FLock, a secure and reliable decentralized Federated Learning system
built on blockchain. To guarantee model quality, we design a novel peer-to-peer
(P2P) review and reward/slash mechanism to detect and deter malicious clients,
powered by on-chain smart contracts. The reward/slash mechanism, in addition,
serves as incentives for participants to honestly upload and review model
parameters in the FLock system. FLock thus improves the performance and the
robustness of FL systems in a fully P2P manner.
Related papers
- Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
Federated unlearning is a promising paradigm for protecting the data ownership of distributed clients.
Existing works require central servers to retain the historical model parameters from distributed clients.
This paper proposes a new blockchain-enabled trustworthy federated unlearning framework.
arXiv Detail & Related papers (2024-01-29T07:04:48Z) - Secure Decentralized Learning with Blockchain [13.795131629462798]
Federated Learning (FL) is a well-known paradigm of distributed machine learning on mobile and IoT devices.
To avoid the single point of failure problem in FL, decentralized learning (DFL) has been proposed to use peer-to-peer communication for model aggregation.
arXiv Detail & Related papers (2023-10-10T23:45:17Z) - zkFL: Zero-Knowledge Proof-based Gradient Aggregation for Federated Learning [13.086807746204597]
Federated learning (FL) is a machine learning paradigm, which enables multiple and decentralized clients to collaboratively train a model under the orchestration of a central aggregator.
Traditional FL relies on the trust assumption of the central aggregator, which forms cohorts of clients honestly.
We introduce zkFL, which leverages zero-knowledge proofs to tackle the issue of a malicious aggregator during the training model aggregation process.
arXiv Detail & Related papers (2023-10-04T03:24:33Z) - FLEDGE: Ledger-based Federated Learning Resilient to Inference and
Backdoor Attacks [8.866045560761528]
Federated learning (FL) is a distributed learning process that allows multiple parties (or clients) to collaboratively train a machine learning model without having them share their private data.
Recent research has demonstrated the effectiveness of inference and poisoning attacks on FL.
We present a ledger-based FL framework known as FLEDGE that allows making parties accountable for their behavior and achieve reasonable efficiency for mitigating inference and poisoning attacks.
arXiv Detail & Related papers (2023-10-03T14:55:30Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
Multi distributed multimedia clients can resort to federated learning (FL) to jointly learn a global shared model.
FL suffers from the cross-client generative adversarial networks (GANs)-based (C-GANs) attack.
We propose Fed-EDKD technique to improve the current popular FL schemes to resist C-GANs attack.
arXiv Detail & Related papers (2023-07-25T08:15:55Z) - Defending Against Poisoning Attacks in Federated Learning with
Blockchain [12.840821573271999]
We propose a secure and reliable federated learning system based on blockchain and distributed ledger technology.
Our system incorporates a peer-to-peer voting mechanism and a reward-and-slash mechanism, which are powered by on-chain smart contracts, to detect and deter malicious behaviors.
arXiv Detail & Related papers (2023-07-02T11:23:33Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z) - BlockFLow: An Accountable and Privacy-Preserving Solution for Federated
Learning [2.0625936401496237]
BlockFLow is an accountable federated learning system that is fully decentralized and privacy-preserving.
Its primary goal is to reward agents proportional to the quality of their contribution while protecting the privacy of the underlying datasets and being resilient to malicious adversaries.
arXiv Detail & Related papers (2020-07-08T02:24:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.