zkFL: Zero-Knowledge Proof-based Gradient Aggregation for Federated Learning
- URL: http://arxiv.org/abs/2310.02554v4
- Date: Fri, 10 May 2024 19:31:42 GMT
- Title: zkFL: Zero-Knowledge Proof-based Gradient Aggregation for Federated Learning
- Authors: Zhipeng Wang, Nanqing Dong, Jiahao Sun, William Knottenbelt, Yike Guo,
- Abstract summary: Federated learning (FL) is a machine learning paradigm, which enables multiple and decentralized clients to collaboratively train a model under the orchestration of a central aggregator.
Traditional FL relies on the trust assumption of the central aggregator, which forms cohorts of clients honestly.
We introduce zkFL, which leverages zero-knowledge proofs to tackle the issue of a malicious aggregator during the training model aggregation process.
- Score: 13.086807746204597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) is a machine learning paradigm, which enables multiple and decentralized clients to collaboratively train a model under the orchestration of a central aggregator. FL can be a scalable machine learning solution in big data scenarios. Traditional FL relies on the trust assumption of the central aggregator, which forms cohorts of clients honestly. However, a malicious aggregator, in reality, could abandon and replace the client's training models, or insert fake clients, to manipulate the final training results. In this work, we introduce zkFL, which leverages zero-knowledge proofs to tackle the issue of a malicious aggregator during the training model aggregation process. To guarantee the correct aggregation results, the aggregator provides a proof per round, demonstrating to the clients that the aggregator executes the intended behavior faithfully. To further reduce the verification cost of clients, we use blockchain to handle the proof in a zero-knowledge way, where miners (i.e., the participants validating and maintaining the blockchain data) can verify the proof without knowing the clients' local and aggregated models. The theoretical analysis and empirical results show that zkFL achieves better security and privacy than traditional FL, without modifying the underlying FL network structure or heavily compromising the training speed.
Related papers
- Secure Decentralized Learning with Blockchain [13.795131629462798]
Federated Learning (FL) is a well-known paradigm of distributed machine learning on mobile and IoT devices.
To avoid the single point of failure problem in FL, decentralized learning (DFL) has been proposed to use peer-to-peer communication for model aggregation.
arXiv Detail & Related papers (2023-10-10T23:45:17Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
Multi distributed multimedia clients can resort to federated learning (FL) to jointly learn a global shared model.
FL suffers from the cross-client generative adversarial networks (GANs)-based (C-GANs) attack.
We propose Fed-EDKD technique to improve the current popular FL schemes to resist C-GANs attack.
arXiv Detail & Related papers (2023-07-25T08:15:55Z) - BAFFLE: A Baseline of Backpropagation-Free Federated Learning [71.09425114547055]
Federated learning (FL) is a general principle for decentralized clients to train a server model collectively without sharing local data.
We develop backpropagation-free federated learning, dubbed BAFFLE, in which backpropagation is replaced by multiple forward processes to estimate gradients.
BAFFLE is 1) memory-efficient and easily fits uploading bandwidth; 2) compatible with inference-only hardware optimization and model quantization or pruning; and 3) well-suited to trusted execution environments.
arXiv Detail & Related papers (2023-01-28T13:34:36Z) - FedCliP: Federated Learning with Client Pruning [3.796320380104124]
Federated learning (FL) is a newly emerging distributed learning paradigm.
One fundamental bottleneck in FL is the heavy communication overheads between the distributed clients and the central server.
We propose FedCliP, the first communication efficient FL training framework from a macro perspective.
arXiv Detail & Related papers (2023-01-17T09:15:37Z) - FLock: Defending Malicious Behaviors in Federated Learning with
Blockchain [3.0111384920731545]
Federated learning (FL) is a promising way to allow multiple data owners (clients) to collaboratively train machine learning models.
We propose to use distributed ledger technology (DLT) to achieve FLock, a secure and reliable decentralized FL system built on blockchain.
arXiv Detail & Related papers (2022-11-05T06:14:44Z) - Federated Learning from Only Unlabeled Data with
Class-Conditional-Sharing Clients [98.22390453672499]
Supervised federated learning (FL) enables multiple clients to share the trained model without sharing their labeled data.
We propose federation of unsupervised learning (FedUL), where the unlabeled data are transformed into surrogate labeled data for each of the clients.
arXiv Detail & Related papers (2022-04-07T09:12:00Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.