An efficient graph generative model for navigating ultra-large
combinatorial synthesis libraries
- URL: http://arxiv.org/abs/2211.04468v1
- Date: Wed, 19 Oct 2022 15:43:13 GMT
- Title: An efficient graph generative model for navigating ultra-large
combinatorial synthesis libraries
- Authors: Aryan Pedawi, Pawel Gniewek, Chaoyi Chang, Brandon M. Anderson, Henry
van den Bedem
- Abstract summary: Virtual, make-on-demand chemical libraries have transformed early-stage drug discovery by unlocking vast, synthetically accessible regions of chemical space.
Recent years have witnessed rapid growth in these libraries from millions to trillions of compounds, hiding undiscovered, potent hits for a variety of therapeutic targets.
We propose the Combinatorial Synthesis Library Variational Auto-Encoder (CSLVAE) to overcome these challenges.
- Score: 1.5495593104596397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Virtual, make-on-demand chemical libraries have transformed early-stage drug
discovery by unlocking vast, synthetically accessible regions of chemical
space. Recent years have witnessed rapid growth in these libraries from
millions to trillions of compounds, hiding undiscovered, potent hits for a
variety of therapeutic targets. However, they are quickly approaching a size
beyond that which permits explicit enumeration, presenting new challenges for
virtual screening. To overcome these challenges, we propose the Combinatorial
Synthesis Library Variational Auto-Encoder (CSLVAE). The proposed generative
model represents such libraries as a differentiable, hierarchically-organized
database. Given a compound from the library, the molecular encoder constructs a
query for retrieval, which is utilized by the molecular decoder to reconstruct
the compound by first decoding its chemical reaction and subsequently decoding
its reactants. Our design minimizes autoregression in the decoder, facilitating
the generation of large, valid molecular graphs. Our method performs fast and
parallel batch inference for ultra-large synthesis libraries, enabling a number
of important applications in early-stage drug discovery. Compounds proposed by
our method are guaranteed to be in the library, and thus synthetically and
cost-effectively accessible. Importantly, CSLVAE can encode out-of-library
compounds and search for in-library analogues. In experiments, we demonstrate
the capabilities of the proposed method in the navigation of massive
combinatorial synthesis libraries.
Related papers
- Unlocking Potential Binders: Multimodal Pretraining DEL-Fusion for Denoising DNA-Encoded Libraries [51.72836644350993]
Multimodal Pretraining DEL-Fusion model (MPDF)
We develop pretraining tasks applying contrastive objectives between different compound representations and their text descriptions.
We propose a novel DEL-fusion framework that amalgamates compound information at the atomic, submolecular, and molecular levels.
arXiv Detail & Related papers (2024-09-07T17:32:21Z) - Bioptic -- A Target-Agnostic Potency-Based Small Molecules Search Engine [0.0]
We develop a target-agnostic, efficacy-based molecule search model.
We screen the ultra-large 40B Enamine REAL library with 100% recall rate.
We benchmarked our model and several state-of-the-art models for both speed performance and retrieval quality of novel molecules.
arXiv Detail & Related papers (2024-06-13T17:53:29Z) - RGFN: Synthesizable Molecular Generation Using GFlowNets [51.33672611338754]
We propose Reaction-GFlowNet, an extension of the GFlowNet framework that operates directly in the space of chemical reactions.
RGFN allows out-of-the-box synthesizability while maintaining comparable quality of generated candidates.
We demonstrate the effectiveness of the proposed approach across a range of oracle models, including pretrained proxy models and GPU-accelerated docking.
arXiv Detail & Related papers (2024-06-01T13:11:11Z) - Towards DNA-Encoded Library Generation with GFlowNets [35.09890349911668]
One of the key challenges in using DELs is library design.
In this paper we consider the task of protein-protein interaction (PPI) biased DEL.
We evaluate several machine learning algorithms on the modulation task and use them as a reward for the proposed GFlowNet-based generative approach.
arXiv Detail & Related papers (2024-04-15T19:01:20Z) - LILO: Learning Interpretable Libraries by Compressing and Documenting Code [71.55208585024198]
We introduce LILO, a neurosymbolic framework that iteratively synthesizes, compresses, and documents code.
LILO combines LLM-guided program synthesis with recent algorithmic advances in automated from Stitch.
We find that AutoDoc boosts performance by helping LILO's synthesizer to interpret and deploy learned abstractions.
arXiv Detail & Related papers (2023-10-30T17:55:02Z) - Compositional Deep Probabilistic Models of DNA Encoded Libraries [6.206196935093064]
We introduce a compositional deep probabilistic model of DEL data, DEL-Compose, which decomposes molecular representations into their mono-synthon, di-synthon, and tri-synthon building blocks.
Our model demonstrates strong performance compared to count baselines, enriches the correct pharmacophores, and offers valuable insights via its intrinsic interpretable structure.
arXiv Detail & Related papers (2023-10-20T19:04:28Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
This research proposes learning approximations of complex exposures from training sets of simple ones.
We demonstrate this approach to synthetic sensor responses surprisingly improves the detection of out-of-distribution obscured chemical analytes.
arXiv Detail & Related papers (2023-02-09T20:19:57Z) - CorpusBrain: Pre-train a Generative Retrieval Model for
Knowledge-Intensive Language Tasks [62.22920673080208]
Single-step generative model can dramatically simplify the search process and be optimized in end-to-end manner.
We name the pre-trained generative retrieval model as CorpusBrain as all information about the corpus is encoded in its parameters without the need of constructing additional index.
arXiv Detail & Related papers (2022-08-16T10:22:49Z) - Learning To Navigate The Synthetically Accessible Chemical Space Using
Reinforcement Learning [75.95376096628135]
We propose a novel forward synthesis framework powered by reinforcement learning (RL) for de novo drug design.
In this setup, the agent learns to navigate through the immense synthetically accessible chemical space.
We describe how the end-to-end training in this study represents an important paradigm in radically expanding the synthesizable chemical space.
arXiv Detail & Related papers (2020-04-26T21:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.