Unlocking Potential Binders: Multimodal Pretraining DEL-Fusion for Denoising DNA-Encoded Libraries
- URL: http://arxiv.org/abs/2409.05916v1
- Date: Sat, 7 Sep 2024 17:32:21 GMT
- Title: Unlocking Potential Binders: Multimodal Pretraining DEL-Fusion for Denoising DNA-Encoded Libraries
- Authors: Chunbin Gu, Mutian He, Hanqun Cao, Guangyong Chen, Chang-yu Hsieh, Pheng Ann Heng,
- Abstract summary: Multimodal Pretraining DEL-Fusion model (MPDF)
We develop pretraining tasks applying contrastive objectives between different compound representations and their text descriptions.
We propose a novel DEL-fusion framework that amalgamates compound information at the atomic, submolecular, and molecular levels.
- Score: 51.72836644350993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of drug discovery, DNA-encoded library (DEL) screening technology has emerged as an efficient method for identifying high-affinity compounds. However, DEL screening faces a significant challenge: noise arising from nonspecific interactions within complex biological systems. Neural networks trained on DEL libraries have been employed to extract compound features, aiming to denoise the data and uncover potential binders to the desired therapeutic target. Nevertheless, the inherent structure of DEL, constrained by the limited diversity of building blocks, impacts the performance of compound encoders. Moreover, existing methods only capture compound features at a single level, further limiting the effectiveness of the denoising strategy. To mitigate these issues, we propose a Multimodal Pretraining DEL-Fusion model (MPDF) that enhances encoder capabilities through pretraining and integrates compound features across various scales. We develop pretraining tasks applying contrastive objectives between different compound representations and their text descriptions, enhancing the compound encoders' ability to acquire generic features. Furthermore, we propose a novel DEL-fusion framework that amalgamates compound information at the atomic, submolecular, and molecular levels, as captured by various compound encoders. The synergy of these innovations equips MPDF with enriched, multi-scale features, enabling comprehensive downstream denoising. Evaluated on three DEL datasets, MPDF demonstrates superior performance in data processing and analysis for validation tasks. Notably, MPDF offers novel insights into identifying high-affinity molecules, paving the way for improved DEL utility in drug discovery.
Related papers
- Binary Code Similarity Detection via Graph Contrastive Learning on Intermediate Representations [52.34030226129628]
Binary Code Similarity Detection (BCSD) plays a crucial role in numerous fields, including vulnerability detection, malware analysis, and code reuse identification.
In this paper, we propose IRBinDiff, which mitigates compilation differences by leveraging LLVM-IR with higher-level semantic abstraction.
Our extensive experiments, conducted under varied compilation settings, demonstrate that IRBinDiff outperforms other leading BCSD methods in both One-to-one comparison and One-to-many search scenarios.
arXiv Detail & Related papers (2024-10-24T09:09:20Z) - DEL-Ranking: Ranking-Correction Denoising Framework for Elucidating Molecular Affinities in DNA-Encoded Libraries [43.47251247740565]
DNA-encoded library (DEL) screening has revolutionized the detection of protein-ligand interactions through read counts.
noise in read counts, stemming from nonspecific interactions, can mislead this exploration process.
We present DEL-Ranking, a distribution-correction denoising framework that addresses these challenges.
arXiv Detail & Related papers (2024-10-19T02:32:09Z) - Memory-efficient High-resolution OCT Volume Synthesis with Cascaded Amortized Latent Diffusion Models [48.87160158792048]
We introduce a cascaded amortized latent diffusion model (CA-LDM) that can synthesis high-resolution OCT volumes in a memory-efficient way.
Experiments on a public high-resolution OCT dataset show that our synthetic data have realistic high-resolution and global features, surpassing the capabilities of existing methods.
arXiv Detail & Related papers (2024-05-26T10:58:22Z) - FORESEE: Multimodal and Multi-view Representation Learning for Robust Prediction of Cancer Survival [3.4686401890974197]
We propose a new end-to-end framework, FORESEE, for robustly predicting patient survival by mining multimodal information.
Cross-fusion transformer effectively utilizes features at the cellular level, tissue level, and tumor heterogeneity level to correlate prognosis.
The hybrid attention encoder (HAE) uses the denoising contextual attention module to obtain the contextual relationship features.
We also propose an asymmetrically masked triplet masked autoencoder to reconstruct lost information within modalities.
arXiv Detail & Related papers (2024-05-13T12:39:08Z) - Compositional Deep Probabilistic Models of DNA Encoded Libraries [6.206196935093064]
We introduce a compositional deep probabilistic model of DEL data, DEL-Compose, which decomposes molecular representations into their mono-synthon, di-synthon, and tri-synthon building blocks.
Our model demonstrates strong performance compared to count baselines, enriches the correct pharmacophores, and offers valuable insights via its intrinsic interpretable structure.
arXiv Detail & Related papers (2023-10-20T19:04:28Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - MASTER: Multi-task Pre-trained Bottlenecked Masked Autoencoders are
Better Dense Retrievers [140.0479479231558]
In this work, we aim to unify a variety of pre-training tasks into a multi-task pre-trained model, namely MASTER.
MASTER utilizes a shared-encoder multi-decoder architecture that can construct a representation bottleneck to compress the abundant semantic information across tasks into dense vectors.
arXiv Detail & Related papers (2022-12-15T13:57:07Z) - DEL-Dock: Molecular Docking-Enabled Modeling of DNA-Encoded Libraries [1.290382979353427]
We introduce a new paradigm, DEL-Dock, that combines ligand-based descriptors with 3-D spatial information from docked protein-ligand complexes.
We show that our model is capable of effectively denoising DEL count data to predict molecule enrichment scores.
arXiv Detail & Related papers (2022-11-30T22:00:24Z) - ToDD: Topological Compound Fingerprinting in Computer-Aided Drug
Discovery [8.620443111346523]
In computer-aided drug discovery (CADD), virtual screening is used for identifying the drug candidates that are most likely to bind to a molecular target in a large library of compounds.
To address this problem, we developed a novel method using multi parameter persistence (MP) homology that produces topological fingerprints of the compounds as multidimensional vectors.
We show that the margin loss fine-tuning of pretrained Triplet networks attains highly competitive results in differentiating between compounds in the embedding space and ranking their likelihood of becoming effective drug candidates.
arXiv Detail & Related papers (2022-11-07T19:00:05Z) - Neural networks for Anatomical Therapeutic Chemical (ATC) [83.73971067918333]
We propose combining multiple multi-label classifiers trained on distinct sets of features, including sets extracted from a Bidirectional Long Short-Term Memory Network (BiLSTM)
Experiments demonstrate the power of this approach, which is shown to outperform the best methods reported in the literature.
arXiv Detail & Related papers (2021-01-22T19:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.