Discover, Explanation, Improvement: An Automatic Slice Detection
Framework for Natural Language Processing
- URL: http://arxiv.org/abs/2211.04476v2
- Date: Sun, 10 Sep 2023 20:04:30 GMT
- Title: Discover, Explanation, Improvement: An Automatic Slice Detection
Framework for Natural Language Processing
- Authors: Wenyue Hua, Lifeng Jin, Linfeng Song, Haitao Mi, Yongfeng Zhang, Dong
Yu
- Abstract summary: slice detection models (SDM) automatically identify underperforming groups of datapoints.
This paper proposes a benchmark named "Discover, Explain, improve (DEIM)" for classification NLP tasks.
Our evaluation shows that Edisa can accurately select error-prone datapoints with informative semantic features.
- Score: 72.14557106085284
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pretrained natural language processing (NLP) models have achieved high
overall performance, but they still make systematic errors. Instead of manual
error analysis, research on slice detection models (SDM), which automatically
identify underperforming groups of datapoints, has caught escalated attention
in Computer Vision for both understanding model behaviors and providing
insights for future model training and designing. However, little research on
SDM and quantitative evaluation of their effectiveness have been conducted on
NLP tasks. Our paper fills the gap by proposing a benchmark named "Discover,
Explain, Improve (DEIM)" for classification NLP tasks along with a new SDM
Edisa. Edisa discovers coherent and underperforming groups of datapoints; DEIM
then unites them under human-understandable concepts and provides comprehensive
evaluation tasks and corresponding quantitative metrics. The evaluation in DEIM
shows that Edisa can accurately select error-prone datapoints with informative
semantic features that summarize error patterns. Detecting difficult datapoints
directly boosts model performance without tuning any original model parameters,
showing that discovered slices are actionable for users.
Related papers
- DECIDER: Leveraging Foundation Model Priors for Improved Model Failure Detection and Explanation [18.77296551727931]
We propose DECIDER, a novel approach that leverages priors from large language models (LLMs) and vision-language models (VLMs) to detect failures in image models.
DECIDER consistently achieves state-of-the-art failure detection performance, significantly outperforming baselines in terms of the overall Matthews correlation coefficient.
arXiv Detail & Related papers (2024-08-01T07:08:11Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - MatPlotAgent: Method and Evaluation for LLM-Based Agentic Scientific Data Visualization [86.61052121715689]
MatPlotAgent is a model-agnostic framework designed to automate scientific data visualization tasks.
MatPlotBench is a high-quality benchmark consisting of 100 human-verified test cases.
arXiv Detail & Related papers (2024-02-18T04:28:28Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - AttributionScanner: A Visual Analytics System for Model Validation with Metadata-Free Slice Finding [29.07617945233152]
Data slice finding is an emerging technique for validating machine learning (ML) models by identifying and analyzing subgroups in a dataset that exhibit poor performance.
This approach faces significant challenges, including the laborious and costly requirement for additional metadata.
We introduce AttributionScanner, an innovative human-in-the-loop Visual Analytics (VA) system, designed for metadata-free data slice finding.
Our system identifies interpretable data slices that involve common model behaviors and visualizes these patterns through an Attribution Mosaic design.
arXiv Detail & Related papers (2024-01-12T09:17:32Z) - Mean-AP Guided Reinforced Active Learning for Object Detection [31.304039641225504]
This paper introduces Mean-AP Guided Reinforced Active Learning for Object Detection (MGRAL)
MGRAL is a novel approach that leverages the concept of expected model output changes as informativeness for deep detection networks.
Our approach demonstrates strong performance, establishing a new paradigm in reinforcement learning-based active learning for object detection.
arXiv Detail & Related papers (2023-10-12T14:59:22Z) - Generalizable Error Modeling for Human Data Annotation: Evidence From an Industry-Scale Search Data Annotation Program [0.0]
This paper presents a predictive error model trained to detect potential errors in search relevance annotation tasks.
We show that errors can be predicted with moderate model performance (AUC=0.65-0.75) and that model performance generalizes well across applications.
We demonstrate the usefulness of the model in the context of auditing, where prioritizing tasks with high predicted error probabilities considerably increases the amount of corrected annotation errors.
arXiv Detail & Related papers (2023-10-08T21:21:19Z) - The Devil is in the Errors: Leveraging Large Language Models for
Fine-grained Machine Translation Evaluation [93.01964988474755]
AutoMQM is a prompting technique which asks large language models to identify and categorize errors in translations.
We study the impact of labeled data through in-context learning and finetuning.
We then evaluate AutoMQM with PaLM-2 models, and we find that it improves performance compared to just prompting for scores.
arXiv Detail & Related papers (2023-08-14T17:17:21Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
We present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss.
Our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks.
arXiv Detail & Related papers (2022-12-20T19:29:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.