AttributionScanner: A Visual Analytics System for Model Validation with Metadata-Free Slice Finding
- URL: http://arxiv.org/abs/2401.06462v2
- Date: Sat, 4 May 2024 05:08:49 GMT
- Title: AttributionScanner: A Visual Analytics System for Model Validation with Metadata-Free Slice Finding
- Authors: Xiwei Xuan, Jorge Piazentin Ono, Liang Gou, Kwan-Liu Ma, Liu Ren,
- Abstract summary: Data slice finding is an emerging technique for validating machine learning (ML) models by identifying and analyzing subgroups in a dataset that exhibit poor performance.
This approach faces significant challenges, including the laborious and costly requirement for additional metadata.
We introduce AttributionScanner, an innovative human-in-the-loop Visual Analytics (VA) system, designed for metadata-free data slice finding.
Our system identifies interpretable data slices that involve common model behaviors and visualizes these patterns through an Attribution Mosaic design.
- Score: 29.07617945233152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data slice finding is an emerging technique for validating machine learning (ML) models by identifying and analyzing subgroups in a dataset that exhibit poor performance, often characterized by distinct feature sets or descriptive metadata. However, in the context of validating vision models involving unstructured image data, this approach faces significant challenges, including the laborious and costly requirement for additional metadata and the complex task of interpreting the root causes of underperformance. To address these challenges, we introduce AttributionScanner, an innovative human-in-the-loop Visual Analytics (VA) system, designed for metadata-free data slice finding. Our system identifies interpretable data slices that involve common model behaviors and visualizes these patterns through an Attribution Mosaic design. Our interactive interface provides straightforward guidance for users to detect, interpret, and annotate predominant model issues, such as spurious correlations (model biases) and mislabeled data, with minimal effort. Additionally, it employs a cutting-edge model regularization technique to mitigate the detected issues and enhance the model's performance. The efficacy of AttributionScanner is demonstrated through use cases involving two benchmark datasets, with qualitative and quantitative evaluations showcasing its substantial effectiveness in vision model validation, ultimately leading to more reliable and accurate models.
Related papers
- Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - Outlier Gradient Analysis: Efficiently Identifying Detrimental Training Samples for Deep Learning Models [36.05242956018461]
In this paper, we establish a bridge between identifying detrimental training samples via influence functions and outlier gradient detection.
We first validate the hypothesis of our proposed outlier gradient analysis approach on synthetic datasets.
We then demonstrate its effectiveness in detecting mislabeled samples in vision models and selecting data samples for improving performance of natural language processing transformer models.
arXiv Detail & Related papers (2024-05-06T21:34:46Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - Improving QA Model Performance with Cartographic Inoculation [0.0]
"Dataset artifacts" reduce the model's ability to generalize to real-world QA problems.
We analyze the impacts and incidence of dataset artifacts using an adversarial challenge set.
We show that by selectively fine-tuning a model on ambiguous adversarial examples from a challenge set, significant performance improvements can be made.
arXiv Detail & Related papers (2024-01-30T23:08:26Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
Missing data can pose a challenge for machine learning (ML) modeling.
Current approaches are categorized into feature imputation and label prediction.
This study proposes a Contrastive Learning framework to model observed data with missing values.
arXiv Detail & Related papers (2023-09-18T13:16:24Z) - Discover, Explanation, Improvement: An Automatic Slice Detection
Framework for Natural Language Processing [72.14557106085284]
slice detection models (SDM) automatically identify underperforming groups of datapoints.
This paper proposes a benchmark named "Discover, Explain, improve (DEIM)" for classification NLP tasks.
Our evaluation shows that Edisa can accurately select error-prone datapoints with informative semantic features.
arXiv Detail & Related papers (2022-11-08T19:00:00Z) - AdViCE: Aggregated Visual Counterfactual Explanations for Machine
Learning Model Validation [9.996986104171754]
We introduce AdViCE, a visual analytics tool that aims to guide users in black-box model debug and validation.
The solution rests on two main visual user interface innovations: (1) an interactive visualization that enables the comparison of decisions on user-defined data subsets; (2) an algorithm and visual design to compute and visualize counterfactual explanations.
arXiv Detail & Related papers (2021-09-12T22:52:12Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
We introduce a 3-dimensional evaluation metric that characterizes the fidelity, diversity and generalization performance of any generative model in a domain-agnostic fashion.
Our metric unifies statistical divergence measures with precision-recall analysis, enabling sample- and distribution-level diagnoses of model fidelity and diversity.
arXiv Detail & Related papers (2021-02-17T18:25:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.