Distributional Shift Adaptation using Domain-Specific Features
- URL: http://arxiv.org/abs/2211.04670v1
- Date: Wed, 9 Nov 2022 04:16:21 GMT
- Title: Distributional Shift Adaptation using Domain-Specific Features
- Authors: Anique Tahir, Lu Cheng, Ruocheng Guo and Huan Liu
- Abstract summary: In open-world scenarios, streaming big data can be Out-Of-Distribution (OOD)
We propose a simple yet effective approach that relies on correlations in general regardless of whether the features are invariant or not.
Our approach uses the most confidently predicted samples identified by an OOD base model to train a new model that effectively adapts to the target domain.
- Score: 41.91388601229745
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning algorithms typically assume that the training and test
samples come from the same distributions, i.e., in-distribution. However, in
open-world scenarios, streaming big data can be Out-Of-Distribution (OOD),
rendering these algorithms ineffective. Prior solutions to the OOD challenge
seek to identify invariant features across different training domains. The
underlying assumption is that these invariant features should also work
reasonably well in the unlabeled target domain. By contrast, this work is
interested in the domain-specific features that include both invariant features
and features unique to the target domain. We propose a simple yet effective
approach that relies on correlations in general regardless of whether the
features are invariant or not. Our approach uses the most confidently predicted
samples identified by an OOD base model (teacher model) to train a new model
(student model) that effectively adapts to the target domain. Empirical
evaluations on benchmark datasets show that the performance is improved over
the SOTA by ~10-20%
Related papers
- Self-training through Classifier Disagreement for Cross-Domain Opinion
Target Extraction [62.41511766918932]
Opinion target extraction (OTE) or aspect extraction (AE) is a fundamental task in opinion mining.
Recent work focus on cross-domain OTE, which is typically encountered in real-world scenarios.
We propose a new SSL approach that opts for selecting target samples whose model output from a domain-specific teacher and student network disagrees on the unlabelled target data.
arXiv Detail & Related papers (2023-02-28T16:31:17Z) - Low-confidence Samples Matter for Domain Adaptation [47.552605279925736]
Domain adaptation (DA) aims to transfer knowledge from a label-rich source domain to a related but label-scarce target domain.
We propose a novel contrastive learning method by processing low-confidence samples.
We evaluate the proposed method in both unsupervised and semi-supervised DA settings.
arXiv Detail & Related papers (2022-02-06T15:45:45Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - On Universal Black-Box Domain Adaptation [53.7611757926922]
We study an arguably least restrictive setting of domain adaptation in a sense of practical deployment.
Only the interface of source model is available to the target domain, and where the label-space relations between the two domains are allowed to be different and unknown.
We propose to unify them into a self-training framework, regularized by consistency of predictions in local neighborhoods of target samples.
arXiv Detail & Related papers (2021-04-10T02:21:09Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Domain Impression: A Source Data Free Domain Adaptation Method [27.19677042654432]
Unsupervised domain adaptation methods solve the adaptation problem for an unlabeled target set, assuming that the source dataset is available with all labels.
This paper proposes a domain adaptation technique that does not need any source data.
Instead of the source data, we are only provided with a classifier that is trained on the source data.
arXiv Detail & Related papers (2021-02-17T19:50:49Z) - Domain Adaptation Using Class Similarity for Robust Speech Recognition [24.951852740214413]
This paper proposes a novel adaptation method for deep neural network (DNN) acoustic model using class similarity.
Experiments showed that our approach outperforms fine-tuning using one-hot labels on both accent and noise adaptation task.
arXiv Detail & Related papers (2020-11-05T12:26:43Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
A fundamental assumption of most machine learning algorithms is that the training and test data are drawn from the same underlying distribution.
In this work, we consider the problem setting of domain generalization, where the training data are structured into domains and there may be multiple test time shifts.
We introduce the framework of adaptive risk minimization (ARM), in which models are directly optimized for effective adaptation to shift by learning to adapt on the training domains.
arXiv Detail & Related papers (2020-07-06T17:59:30Z) - Incremental Unsupervised Domain-Adversarial Training of Neural Networks [17.91571291302582]
In the context of supervised statistical learning, it is typically assumed that the training set comes from the same distribution that draws the test samples.
Here we take a different avenue and approach the problem from an incremental point of view, where the model is adapted to the new domain iteratively.
Our results report a clear improvement with respect to the non-incremental case in several datasets, also outperforming other state-of-the-art domain adaptation algorithms.
arXiv Detail & Related papers (2020-01-13T09:54:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.