Bayesian Neural Networks for Macroeconomic Analysis
- URL: http://arxiv.org/abs/2211.04752v4
- Date: Tue, 2 Apr 2024 18:17:31 GMT
- Title: Bayesian Neural Networks for Macroeconomic Analysis
- Authors: Niko Hauzenberger, Florian Huber, Karin Klieber, Massimiliano Marcellino,
- Abstract summary: We develop Bayesian neural networks (BNNs) that are well-suited for handling datasets commonly used for macroeconomic analysis in policy institutions.
Our approach avoids extensive specification searches through a novel mixture specification for the activation function.
We show that our BNNs produce precise density forecasts, typically better than those from other machine learning methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Macroeconomic data is characterized by a limited number of observations (small T), many time series (big K) but also by featuring temporal dependence. Neural networks, by contrast, are designed for datasets with millions of observations and covariates. In this paper, we develop Bayesian neural networks (BNNs) that are well-suited for handling datasets commonly used for macroeconomic analysis in policy institutions. Our approach avoids extensive specification searches through a novel mixture specification for the activation function that appropriately selects the form of nonlinearities. Shrinkage priors are used to prune the network and force irrelevant neurons to zero. To cope with heteroskedasticity, the BNN is augmented with a stochastic volatility model for the error term. We illustrate how the model can be used in a policy institution by first showing that our different BNNs produce precise density forecasts, typically better than those from other machine learning methods. Finally, we showcase how our model can be used to recover nonlinearities in the reaction of macroeconomic aggregates to financial shocks.
Related papers
- GARCH-Informed Neural Networks for Volatility Prediction in Financial Markets [0.0]
We present a new, hybrid Deep Learning model that captures and forecasting market volatility more accurately than either class of models are capable of on their own.
When compared to other time series models, GINN showed superior out-of-sample prediction performance in terms of the Coefficient of Determination ($R2$), Mean Squared Error (MSE), and Mean Absolute Error (MAE)
arXiv Detail & Related papers (2024-09-30T23:53:54Z) - An economically-consistent discrete choice model with flexible utility specification based on artificial neural networks [0.0]
We propose a new discrete choice model based on artificial neural networks (ANNs) named "Alternative-Specific and Shared weights Neural Network (ASS-NN)"
The ASS-NN can derive economically-consistent outcomes, such as marginal utilities or willingness to pay, without explicitly specifying the utility functional form.
arXiv Detail & Related papers (2024-04-19T22:13:12Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Incorporating Unlabelled Data into Bayesian Neural Networks [48.25555899636015]
We introduce Self-Supervised Bayesian Neural Networks, which use unlabelled data to learn models with suitable prior predictive distributions.
We show that the prior predictive distributions of self-supervised BNNs capture problem semantics better than conventional BNN priors.
Our approach offers improved predictive performance over conventional BNNs, especially in low-budget regimes.
arXiv Detail & Related papers (2023-04-04T12:51:35Z) - Constraining cosmological parameters from N-body simulations with
Variational Bayesian Neural Networks [0.0]
Multiplicative normalizing flows (MNFs) are a family of approximate posteriors for the parameters of BNNs.
We have compared MNFs with respect to the standard BNNs, and the flipout estimator.
MNFs provide more realistic predictive distribution closer to the true posterior mitigating the bias introduced by the variational approximation.
arXiv Detail & Related papers (2023-01-09T16:07:48Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - coVariance Neural Networks [119.45320143101381]
Graph neural networks (GNN) are an effective framework that exploit inter-relationships within graph-structured data for learning.
We propose a GNN architecture, called coVariance neural network (VNN), that operates on sample covariance matrices as graphs.
We show that VNN performance is indeed more stable than PCA-based statistical approaches.
arXiv Detail & Related papers (2022-05-31T15:04:43Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Bayesian Graph Neural Networks for Molecular Property Prediction [15.160090982544867]
This study benchmarks a set of Bayesian methods applied to a directed MPNN, using the QM9 regression dataset.
We find that capturing uncertainty in both readout and message passing parameters yields enhanced predictive accuracy, calibration, and performance on a downstream molecular search task.
arXiv Detail & Related papers (2020-11-25T22:32:54Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.