Incorporating Unlabelled Data into Bayesian Neural Networks
- URL: http://arxiv.org/abs/2304.01762v3
- Date: Fri, 30 Aug 2024 12:51:53 GMT
- Title: Incorporating Unlabelled Data into Bayesian Neural Networks
- Authors: Mrinank Sharma, Tom Rainforth, Yee Whye Teh, Vincent Fortuin,
- Abstract summary: We introduce Self-Supervised Bayesian Neural Networks, which use unlabelled data to learn models with suitable prior predictive distributions.
We show that the prior predictive distributions of self-supervised BNNs capture problem semantics better than conventional BNN priors.
Our approach offers improved predictive performance over conventional BNNs, especially in low-budget regimes.
- Score: 48.25555899636015
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional Bayesian Neural Networks (BNNs) are unable to leverage unlabelled data to improve their predictions. To overcome this limitation, we introduce Self-Supervised Bayesian Neural Networks, which use unlabelled data to learn models with suitable prior predictive distributions. This is achieved by leveraging contrastive pretraining techniques and optimising a variational lower bound. We then show that the prior predictive distributions of self-supervised BNNs capture problem semantics better than conventional BNN priors. In turn, our approach offers improved predictive performance over conventional BNNs, especially in low-budget regimes.
Related papers
- Bayesian Entropy Neural Networks for Physics-Aware Prediction [14.705526856205454]
We introduce BENN, a framework designed to impose constraints on Bayesian Neural Network (BNN) predictions.
Benn is capable of constraining not only the predicted values but also their derivatives and variances, ensuring a more robust and reliable model output.
Results highlight significant improvements over traditional BNNs and showcase competitive performance relative to contemporary constrained deep learning methods.
arXiv Detail & Related papers (2024-07-01T07:00:44Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
Graph neural networks are recognized for their strong performance across various applications.
BP has limitations that challenge its biological plausibility and affect the efficiency, scalability and parallelism of training neural networks for graph-based tasks.
We propose DFA-GNN, a novel forward learning framework tailored for GNNs with a case study of semi-supervised learning.
arXiv Detail & Related papers (2024-06-04T07:24:51Z) - Bayesian Neural Networks with Domain Knowledge Priors [52.80929437592308]
We propose a framework for integrating general forms of domain knowledge into a BNN prior.
We show that BNNs using our proposed domain knowledge priors outperform those with standard priors.
arXiv Detail & Related papers (2024-02-20T22:34:53Z) - Make Me a BNN: A Simple Strategy for Estimating Bayesian Uncertainty
from Pre-trained Models [40.38541033389344]
Deep Neural Networks (DNNs) are powerful tools for various computer vision tasks, yet they often struggle with reliable uncertainty quantification.
We introduce the Adaptable Bayesian Neural Network (ABNN), a simple and scalable strategy to seamlessly transform DNNs into BNNs.
We conduct extensive experiments across multiple datasets for image classification and semantic segmentation tasks, and our results demonstrate that ABNN achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-12-23T16:39:24Z) - Posterior Regularized Bayesian Neural Network Incorporating Soft and
Hard Knowledge Constraints [12.050265348673078]
We propose a novel Posterior-Regularized Bayesian Neural Network (PR-BNN) model by incorporating different types of knowledge constraints.
Experiments in simulation and two case studies about aviation landing prediction and solar energy output prediction have shown the knowledge constraints and the performance improvement of the proposed model.
arXiv Detail & Related papers (2022-10-16T18:58:50Z) - Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer [77.78479877473899]
We design a spatial-temporal-fusion BNN for efficiently scaling BNNs to large models.
Compared to vanilla BNNs, our approach can greatly reduce the training time and the number of parameters, which contributes to scale BNNs efficiently.
arXiv Detail & Related papers (2021-12-12T17:13:14Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.