論文の概要: Hyper-Parameter Auto-Tuning for Sparse Bayesian Learning
- arxiv url: http://arxiv.org/abs/2211.04847v1
- Date: Wed, 9 Nov 2022 12:34:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 17:58:50.978041
- Title: Hyper-Parameter Auto-Tuning for Sparse Bayesian Learning
- Title(参考訳): 疎ベイズ学習のためのハイパーパラメータ自動チューニング
- Authors: Dawei Gao, Qinghua Guo, Ming Jin, Guisheng Liao, and Yonina C. Eldar
- Abstract要約: 我々は、疎ベイズ学習におけるハイパーパラメータチューニングのためのニューラルネットワーク(NN)ベースのオートチューニングを設計し、学習する。
コンバージェンス率とリカバリ性能の大幅な向上が達成できることを示す。
- 参考スコア(独自算出の注目度): 72.83293818245978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Choosing the values of hyper-parameters in sparse Bayesian learning (SBL) can
significantly impact performance. However, the hyper-parameters are normally
tuned manually, which is often a difficult task. Most recently, effective
automatic hyper-parameter tuning was achieved by using an empirical auto-tuner.
In this work, we address the issue of hyper-parameter auto-tuning using neural
network (NN)-based learning. Inspired by the empirical auto-tuner, we design
and learn a NN-based auto-tuner, and show that considerable improvement in
convergence rate and recovery performance can be achieved.
- Abstract(参考訳): 疎ベイズ学習(SBL)におけるハイパーパラメータの値の選択は性能に大きな影響を与える。
しかし、ハイパーパラメータは通常手動で調整されるため、しばしば難しい作業である。
最近では、実証的なオートチューニングを用いて効果的な自動パラメータチューニングを実現している。
本研究では,ニューラルネットワーク(NN)に基づく学習を用いたハイパーパラメータ自動チューニングの問題に対処する。
実験的なオートチューニングにインスパイアされ、NNベースのオートチューニングの設計と学習を行い、収束率と回復性能の大幅な向上が達成できることを示す。
関連論文リスト
- E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
新しいタスクのための微調整された大規模な事前学習型ビジョンモデルは、パラメーター集約化が進んでいる。
本稿では,大規模なトランスフォーマーモデル適応のための効果的かつ効率的なビジュアルプロンプトチューニング(E2VPT)手法を提案する。
提案手法は2つのベンチマークにおいて,最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2023-07-25T19:03:21Z) - Tune As You Scale: Hyperparameter Optimization For Compute Efficient
Training [0.0]
そこで本研究では,大規模モデルのロバストなチューニング手法を提案する。
CarBSはパフォーマンスコストフロンティアの周辺でローカル検索を行う。
その結果、単純なベースラインをチューニングするだけで、ProcGenベンチマーク全体を効果的に解決できることがわかった。
論文 参考訳(メタデータ) (2023-06-13T18:22:24Z) - AutoRL Hyperparameter Landscapes [69.15927869840918]
強化学習(Reinforcement Learning, RL)は印象的な結果を生み出すことができるが、その使用はハイパーパラメータがパフォーマンスに与える影響によって制限されている。
我々は,これらのハイパーパラメータの景観を1つの時間だけではなく,複数の時間内に構築し,解析する手法を提案する。
これは、ハイパーパラメータがトレーニング中に動的に調整されるべきであるという理論を支持し、ランドスケープ解析によって得られるAutoRL問題に関するさらなる洞察の可能性を示している。
論文 参考訳(メタデータ) (2023-04-05T12:14:41Z) - AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient
Hyper-parameter Tuning [72.54359545547904]
ハイパーパラメータチューニングのための勾配に基づくサブセット選択フレームワークを提案する。
ハイパーパラメータチューニングに勾配ベースのデータサブセットを用いることで、3$times$-30$times$のターンアラウンド時間とスピードアップが大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-03-15T19:25:01Z) - To tune or not to tune? An Approach for Recommending Important
Hyperparameters [2.121963121603413]
機械学習モデルの性能とハイパーパラメータの関係を構築して、トレンドを発見し、洞察を得ることを検討する。
この結果から,ユーザが時間を要するチューニング戦略を実行する価値があるかどうかを判断することが可能になる。
論文 参考訳(メタデータ) (2021-08-30T08:54:58Z) - Amortized Auto-Tuning: Cost-Efficient Transfer Optimization for
Hyperparameter Recommendation [83.85021205445662]
本稿では,機械学習モデルのチューニングを高速化する自動チューニング(AT2)を提案する。
マルチタスクマルチ忠実ベイズ最適化フレームワークの徹底的な解析を行い、最適なインスタンス化-アモータイズ自動チューニング(AT2)を実現する。
論文 参考訳(メタデータ) (2021-06-17T00:01:18Z) - Automatic Hyper-Parameter Optimization Based on Mapping Discovery from
Data to Hyper-Parameters [3.37314595161109]
本稿では,データから対応するハイパーパラメータへのマッピングに基づく,効率的な自動パラメータ最適化手法を提案する。
提案手法は最先端のアポラッチを著しく上回ることを示す。
論文 参考訳(メタデータ) (2020-03-03T19:26:23Z) - Rethinking the Hyperparameters for Fine-tuning [78.15505286781293]
事前訓練されたImageNetモデルからの微調整は、様々なコンピュータビジョンタスクのデファクトスタンダードとなっている。
ファインチューニングの現在のプラクティスは、通常、ハイパーパラメータのアドホックな選択を選択することである。
本稿では、微調整のためのハイパーパラメータの設定に関するいくつかの一般的なプラクティスを再検討する。
論文 参考訳(メタデータ) (2020-02-19T18:59:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。