論文の概要: Cross-lingual Transfer Learning for Check-worthy Claim Identification
over Twitter
- arxiv url: http://arxiv.org/abs/2211.05087v1
- Date: Wed, 9 Nov 2022 18:18:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 16:10:15.143309
- Title: Cross-lingual Transfer Learning for Check-worthy Claim Identification
over Twitter
- Title(参考訳): twitter上でのチェック可能なクレーム識別のための言語間転送学習
- Authors: Maram Hasanain and Tamer Elsayed
- Abstract要約: ソーシャルメディアに拡散する誤報は、疑わしいインフォデミックになっている。
本稿では,多言語BERT(mBERT)モデルを用いて,5つの多言語対をまたいだ言語間チェックハーネス推定のための6つの手法を体系的に検討する。
以上の結果から,いくつかの言語対では,ゼロショットの言語間移動が可能であり,対象言語で訓練された単言語モデルに匹敵する性能が得られた。
- 参考スコア(独自算出の注目度): 7.601937548486356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Misinformation spread over social media has become an undeniable infodemic.
However, not all spreading claims are made equal. If propagated, some claims
can be destructive, not only on the individual level, but to organizations and
even countries. Detecting claims that should be prioritized for fact-checking
is considered the first step to fight against spread of fake news. With
training data limited to a handful of languages, developing supervised models
to tackle the problem over lower-resource languages is currently infeasible.
Therefore, our work aims to investigate whether we can use existing datasets to
train models for predicting worthiness of verification of claims in tweets in
other languages. We present a systematic comparative study of six approaches
for cross-lingual check-worthiness estimation across pairs of five diverse
languages with the help of Multilingual BERT (mBERT) model. We run our
experiments using a state-of-the-art multilingual Twitter dataset. Our results
show that for some language pairs, zero-shot cross-lingual transfer is possible
and can perform as good as monolingual models that are trained on the target
language. We also show that in some languages, this approach outperforms (or at
least is comparable to) state-of-the-art models.
- Abstract(参考訳): ソーシャルメディアに拡散する誤報は、疑わしいインフォデミックになっている。
しかし、全ての主張が等しくされるわけではない。
伝播すれば、一部の主張は個人レベルだけでなく、組織や国にも破壊的になる可能性がある。
ファクトチェックに優先すべきクレームの検出は、偽ニュースの拡散と戦うための第一歩と考えられている。
トレーニングデータは少数の言語に限定されているため、低リソース言語に対処する教師付きモデルの開発は現在不可能である。
そこで本研究の目的は,既存のデータセットを用いて,他の言語でのツイートにおけるクレームの検証の価値を予測するモデルをトレーニングできるかどうかを検討することである。
我々は,多言語BERT(mBERT)モデルを用いて,5つの多言語対をまたいだ言語間チェックハーネス推定手法の体系的比較を行った。
我々は,最先端の多言語twitterデータセットを用いて実験を行う。
以上の結果から,いくつかの言語対では,ゼロショットの言語間移動が可能であり,対象言語で訓練された単言語モデルに匹敵する性能が得られた。
いくつかの言語では、このアプローチが最先端のモデルよりも優れている(少なくとも同等)ことも示しています。
関連論文リスト
- Cross-Lingual Transfer Learning for Phrase Break Prediction with
Multilingual Language Model [13.730152819942445]
言語間変換学習は低リソース言語の性能向上に特に有効である。
このことは、リソース不足言語におけるTSフロントエンドの開発には、言語間転送が安価で効果的であることを示している。
論文 参考訳(メタデータ) (2023-06-05T04:10:04Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
言語横断的な自己監督型視覚表現学習は、ここ数年、研究トピックとして成長している。
我々は最近提案したRAVEn(Raw Audio-Visual Speechs)フレームワークを用いて,未ラベルデータを用いた音声-視覚モデルの事前学習を行う。
1)データ量が多いマルチ言語モデルはモノリンガルモデルよりも優れているが、データの量を維持すると、モノリンガルモデルの性能が向上する傾向にある。
論文 参考訳(メタデータ) (2023-03-14T17:05:08Z) - Languages You Know Influence Those You Learn: Impact of Language
Characteristics on Multi-Lingual Text-to-Text Transfer [4.554080966463776]
マルチ言語モデル (LM) は低リソース言語での自然言語処理の実現に成功している。
このようなモデル、特にmT5は、言語間の言語的および意味的な知識をどう転送するかをよりよく理解しようとしています。
この研究の鍵となる発見は、構文、形態学、音韻学の類似性が言語間移動のよい予測因子であることである。
論文 参考訳(メタデータ) (2022-12-04T07:22:21Z) - Detecting Languages Unintelligible to Multilingual Models through Local
Structure Probes [15.870989191524094]
我々は、言語間モデルでよく理解されていない言語を検出するために、未理解のテキストのみを必要とする一般的なアプローチを開発する。
我々のアプローチは、もしモデルの理解が言語のテキストに対する摂動に無関心であるなら、その言語について限られた理解を持つ可能性が高いという仮説から導かれる。
論文 参考訳(メタデータ) (2022-11-09T16:45:16Z) - Language Contamination Explains the Cross-lingual Capabilities of
English Pretrained Models [79.38278330678965]
一般的な英語事前学習コーパスには、かなりの量の非英語テキストが含まれていることが判明した。
これにより、大規模なデータセットで数十億の外国語トークンが生成される。
そして、これらの少数の非英語データでさえ、それらに基づいて訓練されたモデルの言語間移動を促進することを実証する。
論文 参考訳(メタデータ) (2022-04-17T23:56:54Z) - Matching Tweets With Applicable Fact-Checks Across Languages [27.762055254009017]
ソーシャルメディア投稿(ツイート)のクレームに対する既存のファクトチェックを自動的に見つけることに重点を置いています。
モノリンガル(英語のみ)、マルチリンガル(スペイン語、ポルトガル語)、クロスリンガル(ヒンディー語-英語)の設定において、分類と検索の両方の実験を行う。
4つの言語対における「マッチ」分類(平均精度93%)の有望な結果を示す。
論文 参考訳(メタデータ) (2022-02-14T23:33:02Z) - IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and
Languages [87.5457337866383]
画像認識言語理解評価ベンチマークについて紹介する。
IGLUEは、視覚的質問応答、クロスモーダル検索、グラウンドド推論、20言語にわたるグラウンドドエンターテイメントタスクをまとめて提供する。
翻訳-テストの転送はゼロショットの転送よりも優れており、少数ショットの学習は多くのタスクに役立てることが難しい。
論文 参考訳(メタデータ) (2022-01-27T18:53:22Z) - Revisiting the Primacy of English in Zero-shot Cross-lingual Transfer [39.360667403003745]
ゼロショット・クロスランガル・トランスファーは実用的な解決策として浮上している。
人気のあるゼロショットベンチマークによって強化されたように、英語は転送のための主要なソース言語である。
ドイツ語やロシア語のような他の高リソース言語は、より効果的に転送されることがよくあります。
論文 参考訳(メタデータ) (2021-06-30T16:05:57Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
言語間機械読解(CLMRC)は、ローソース言語に大規模なデータセットがないため、依然として難しい問題である。
本稿では,Language Branch Machine Reading (LBMRC) という新しい拡張手法を提案する。
LBMRCは、個々の言語に精通したMultiple Machine Read comprehension (MRC)モデルを訓練する。
複数の言語分岐モデルから全ての対象言語に対する単一モデルへのアマルガメート知識の多言語蒸留アプローチを考案する。
論文 参考訳(メタデータ) (2020-10-27T13:12:17Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
XCOPA (Cross-lingual Choice of Plausible Alternatives) は11言語における因果コモンセンス推論のための多言語データセットである。
提案手法は,翻訳に基づく転送と比較して,現在の手法の性能が低下していることを明らかにする。
論文 参考訳(メタデータ) (2020-05-01T12:22:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。