論文の概要: Deep Learning for Time Series Anomaly Detection: A Survey
- arxiv url: http://arxiv.org/abs/2211.05244v3
- Date: Tue, 28 May 2024 04:36:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 04:56:05.965849
- Title: Deep Learning for Time Series Anomaly Detection: A Survey
- Title(参考訳): 時系列異常検出のためのディープラーニング
- Authors: Zahra Zamanzadeh Darban, Geoffrey I. Webb, Shirui Pan, Charu C. Aggarwal, Mahsa Salehi,
- Abstract要約: 時系列異常検出は、製造業や医療を含む幅広い研究分野や応用に応用されている。
時系列の大規模かつ複雑なパターンにより、研究者は異常パターンを検出するための特別な深層学習モデルを開発するようになった。
本調査は,ディープラーニングを用いた構造化および総合的時系列異常検出モデルの提供に焦点を当てる。
- 参考スコア(独自算出の注目度): 53.83593870825628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
- Abstract(参考訳): 時系列異常検出は、製造業や医療を含む幅広い研究分野や応用に応用されている。
異常の存在は、生産障害、システム欠陥、心臓の発散など、新しい事象や予期せぬ出来事を示しうるため、特に興味がある。
時系列の大規模かつ複雑なパターンにより、研究者は異常パターンを検出するための特別な深層学習モデルを開発するようになった。
本調査は,ディープラーニングを用いた構造化および総合的時系列異常検出モデルの提供に焦点を当てる。
異常検出モデルを異なるカテゴリに分割する要因に基づいた分類を提供する。
各カテゴリの基本的な異常検出技術を説明する以外に、利点と限界についても論じる。
さらに,近年の様々なアプリケーション領域にわたる時系列における深部異常検出の例についても紹介する。
最終的に、深い異常検出モデルを採用する際に直面する研究と課題のオープンな問題を要約する。
関連論文リスト
- Open Challenges in Time Series Anomaly Detection: An Industry Perspective [0.0]
実践的な関連性のあるいくつかの分野をリストアップし、現在の議論からまだ検討されていないか、あるいは完全に欠落していると信じている。
クラウド環境にデプロイされるシステムの調査に基づいて,ストリーミングアルゴリズム,ヒューマン・イン・ザ・ループシナリオ,ポイントプロセス,条件付き異常,時系列の人口分析の分野を動機づける。
論文 参考訳(メタデータ) (2025-02-08T00:38:07Z) - Dive into Time-Series Anomaly Detection: A Decade Review [19.883791946730494]
時系列異常検出は重要な活動であり、サイバーセキュリティ、金融市場、法執行機関、医療など様々な分野で応用されている。
この調査は、時系列の文脈においてプロセス中心の分類の下で既存のソリューションを異常に検出し、要約する。
異常検出手法の独自の分類に加えて,文献のメタアナリシスを行い,時系列異常検出研究における一般的な傾向を概説する。
論文 参考訳(メタデータ) (2024-12-29T16:11:46Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - Prototypes as Explanation for Time Series Anomaly Detection [6.051581987453758]
本稿では,プロトタイプを例として,異常検出時の正規パターンの状態の説明として用いたProtoADを提案する。
潜在空間と入力空間のプロトタイプの両方を可視化することにより、正規データがどのようにモデル化され、なぜ特定のパターンが異常であると考えられるのかを直感的に示す。
論文 参考訳(メタデータ) (2023-07-04T09:40:30Z) - Precursor-of-Anomaly Detection for Irregular Time Series [31.73234935455713]
本稿では,新しいタイプの異常検出法であるPrecursor-of-Anomaly(PoA)について述べる。
両問題を同時に解くために,ニューラルネットワークとマルチタスク学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-27T14:10:09Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Catching Both Gray and Black Swans: Open-set Supervised Anomaly
Detection [90.32910087103744]
ラベル付き異常な例は、多くの現実世界のアプリケーションでよく見られる。
これらの異常例は、アプリケーション固有の異常について貴重な知識を提供する。
トレーニング中に見られる異常は、可能なあらゆる種類の異常を説明できないことが多い。
本稿では,オープンセット型教師付き異常検出に取り組む。
論文 参考訳(メタデータ) (2022-03-28T05:21:37Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
ダイナミカルシステムの研究において,連続時間における因果的発見を検討する。
本稿では,ニューラルネットワークを用いた因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-06T08:48:02Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Anomaly Detection in Univariate Time-series: A Survey on the
State-of-the-Art [0.0]
時系列データの異常検出は、長い間重要な研究分野であった。
近年,時系列の異常を検出する機械学習アルゴリズムが増えている。
研究者たちは、(ディープ)ニューラルネットワークを使ってこれらの技術を改善しようとした。
論文 参考訳(メタデータ) (2020-04-01T13:22:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。