論文の概要: Safety-Constrained Policy Transfer with Successor Features
- arxiv url: http://arxiv.org/abs/2211.05361v1
- Date: Thu, 10 Nov 2022 06:06:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 15:40:25.272323
- Title: Safety-Constrained Policy Transfer with Successor Features
- Title(参考訳): 代替機能を備えた安全制約付き政策移行
- Authors: Zeyu Feng, Bowen Zhang, Jianxin Bi, Harold Soh
- Abstract要約: 本稿では,安全制約へのポリシーの移転と遵守を可能にするCMDP(Constrained Markov Decision Process)の定式化を提案する。
我々のアプローチは、Lagrangian の定式化による制約付き設定への一般化された政策改善の新たな拡張に依存している。
シミュレーションドメインでの我々の実験は、我々のアプローチが効果的であることを示し、安全上の制約を考慮に入れた場合、安全でない状態の訪問を少なくし、代替の最先端の手法よりも優れています。
- 参考スコア(独自算出の注目度): 19.754549649781644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we focus on the problem of safe policy transfer in
reinforcement learning: we seek to leverage existing policies when learning a
new task with specified constraints. This problem is important for
safety-critical applications where interactions are costly and unconstrained
policies can lead to undesirable or dangerous outcomes, e.g., with physical
robots that interact with humans. We propose a Constrained Markov Decision
Process (CMDP) formulation that simultaneously enables the transfer of policies
and adherence to safety constraints. Our formulation cleanly separates task
goals from safety considerations and permits the specification of a wide
variety of constraints. Our approach relies on a novel extension of generalized
policy improvement to constrained settings via a Lagrangian formulation. We
devise a dual optimization algorithm that estimates the optimal dual variable
of a target task, thus enabling safe transfer of policies derived from
successor features learned on source tasks. Our experiments in simulated
domains show that our approach is effective; it visits unsafe states less
frequently and outperforms alternative state-of-the-art methods when taking
safety constraints into account.
- Abstract(参考訳): 本研究は,強化学習における安全な政策伝達の問題に焦点をあてる:我々は,制約のある新しいタスクを学習する際に,既存のポリシーを活用しようとする。
この問題は、人間と相互作用する物理的ロボットのように、相互作用が費用がかかり、制約のないポリシーが望ましくない、あるいは危険な結果をもたらす、安全クリティカルなアプリケーションにとって重要である。
本稿では,安全制約へのポリシーの移転と遵守を可能にするCMDP(Constrained Markov Decision Process)の定式化を提案する。
提案方式は,タスク目標を安全配慮からきれいに分離し,幅広い制約の仕様を許容する。
我々のアプローチは、Lagrangian の定式化による制約付き設定への一般化された政策改善の新たな拡張に依存している。
目的タスクの最適双対変数を推定する双対最適化アルゴリズムを考案し、ソースタスクで学習した後継機能から引き起こされたポリシーの安全な転送を可能にする。
シミュレーションドメインでの我々の実験は、我々のアプローチが効果的であることを示し、安全上の制約を考慮に入れた場合、安全でない状態の訪問を少なくし、代替の最先端の手法よりも優れています。
関連論文リスト
- Flipping-based Policy for Chance-Constrained Markov Decision Processes [9.404184937255694]
本稿では,CCMDP(Chance-Constrained Markov Decision Processs)のためのテキストフリップに基づくポリシーを提案する。
フリップベースのポリシーは、2つのアクション候補の間で潜在的に歪んだコインを投げて次のアクションを選択する。
提案手法は,既存の安全RLアルゴリズムの性能を安全性の制約と同じ限度で向上させることを実証する。
論文 参考訳(メタデータ) (2024-10-09T02:00:39Z) - Safe and Balanced: A Framework for Constrained Multi-Objective Reinforcement Learning [26.244121960815907]
本稿では,多目的学習と制約順守の政策最適化を協調するプライマリベースフレームワークを提案する。
提案手法は,複数のRL目標を最適化するために,新しい自然ポリシー勾配演算法を用いる。
また,提案手法は,安全性の高い多目的強化学習タスクにおいて,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:42:10Z) - Policy Bifurcation in Safe Reinforcement Learning [35.75059015441807]
いくつかのシナリオでは、実行可能なポリシーは不連続または多値であり、不連続な局所最適性の間の補間は必然的に制約違反につながる。
我々は,このような現象の発生機構を最初に同定し,安全RLにおける分岐の存在を厳密に証明するためにトポロジカル解析を用いる。
本稿では,ガウス混合分布をポリシ出力として利用するマルチモーダルポリシ最適化(MUPO)と呼ばれる安全なRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-19T15:54:38Z) - Uniformly Safe RL with Objective Suppression for Multi-Constraint Safety-Critical Applications [73.58451824894568]
広く採用されているCMDPモデルは予測のリスクを制約しており、長い尾の州で危険な行動を起こす余地がある。
安全クリティカルな領域では、そのような行動は破滅的な結果をもたらす可能性がある。
本稿では,目標を最大化するタスク報酬を適応的に抑制する新しい手法であるObjective Suppressionを提案する。
論文 参考訳(メタデータ) (2024-02-23T23:22:06Z) - IOB: Integrating Optimization Transfer and Behavior Transfer for
Multi-Policy Reuse [50.90781542323258]
強化学習(RL)エージェントは、ソースポリシーからの知識を関連する目標タスクに転送することができる。
従来手法では,階層的なポリシやソースポリシの値関数の見積など,新たなコンポーネントが導入されていた。
本稿では,余分なコンポーネントを訓練せずにソースポリシーを選択する新しい転送RL法を提案する。
論文 参考訳(メタデータ) (2023-08-14T09:22:35Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
本稿では、等価な制約のない問題の単一最小化により、煩雑な制約付きポリシー反復を解決するP3Oを提案する。
P3Oは、コスト制約を排除し、クリップされたサロゲート目的による信頼領域制約を除去するために、単純なyet効果のペナルティ関数を利用する。
P3Oは,一連の制約された機関車作業において,報酬改善と制約満足度の両方に関して,最先端のアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2022-05-24T06:15:51Z) - Privacy-Constrained Policies via Mutual Information Regularized Policy Gradients [54.98496284653234]
報酬を最大化しつつ、行動を通じて特定の機密状態変数の開示を最小限に抑えながら、報酬を最大化する政策を訓練する課題を考察する。
本稿では, 感性状態と行動の相互情報に基づく正則化器を導入することで, この問題を解決する。
プライバシ制約のあるポリシーを最適化するためのモデルベース推定器を開発した。
論文 参考訳(メタデータ) (2020-12-30T03:22:35Z) - Constrained Markov Decision Processes via Backward Value Functions [43.649330976089004]
制約付きマルコフ決定プロセスとして,制約付き学習の問題をモデル化する。
我々のアプローチの重要な貢献は、累積的なコスト制約を状態ベースの制約に変換することである。
我々は、エージェントが訓練の過程で安全を確保しながら収束する理論的保証を提供する。
論文 参考訳(メタデータ) (2020-08-26T20:56:16Z) - Variational Policy Propagation for Multi-agent Reinforcement Learning [68.26579560607597]
本稿では,エージェント間の相互作用を通じて,共役ポリシーを学習するために,変動ポリシー伝搬 (VPP) という,共役型多エージェント強化学習アルゴリズムを提案する。
共同政策がマルコフランダム場(Markov Random Field)であることは、いくつかの穏やかな条件下で証明し、それによって政策空間を効果的に減少させる。
我々は、マルコフ確率場から効率的に行動をサンプリングでき、全体的な政策が微分可能であるようなポリシーにおいて、変動推論を特別な微分可能な層として統合する。
論文 参考訳(メタデータ) (2020-04-19T15:42:55Z) - Deep Constrained Q-learning [15.582910645906145]
多くの実世界の応用において、強化学習エージェントは特定の規則に従うか制約を満たすことなく、複数の目的を最適化する必要がある。
制約付きMDPの最適Q関数とそれに対応する安全ポリシーを学習するために,Q更新時の行動空間を直接制限する新しい非政治的強化学習フレームワークであるConstrained Q-learningを提案する。
論文 参考訳(メタデータ) (2020-03-20T17:26:03Z) - Preventing Imitation Learning with Adversarial Policy Ensembles [79.81807680370677]
模倣学習は、政策プライバシに関する問題を引き起こす専門家を観察することで、ポリシーを再現することができる。
プロプライエタリなポリシーをクローンする外部オブザーバに対して、どうすれば保護できるのか?
新しい強化学習フレームワークを導入し、準最適政策のアンサンブルを訓練する。
論文 参考訳(メタデータ) (2020-01-31T01:57:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。