Robust Model Selection of Gaussian Graphical Models
- URL: http://arxiv.org/abs/2211.05690v2
- Date: Wed, 8 May 2024 03:26:22 GMT
- Title: Robust Model Selection of Gaussian Graphical Models
- Authors: Abrar Zahin, Rajasekhar Anguluri, Lalitha Sankar, Oliver Kosut, Gautam Dasarathy,
- Abstract summary: Noise-corrupted samples present significant challenges in graphical model selection.
We propose an algorithm which provably recovers the underlying graph up to the identified ambiguity.
This information is useful in a range of real-world problems, including power grids, social networks, protein-protein interactions, and neural structures.
- Score: 16.933125281564163
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Gaussian graphical model selection, noise-corrupted samples present significant challenges. It is known that even minimal amounts of noise can obscure the underlying structure, leading to fundamental identifiability issues. A recent line of work addressing this "robust model selection" problem narrows its focus to tree-structured graphical models. Even within this specific class of models, exact structure recovery is shown to be impossible. However, several algorithms have been developed that are known to provably recover the underlying tree-structure up to an (unavoidable) equivalence class. In this paper, we extend these results beyond tree-structured graphs. We first characterize the equivalence class up to which general graphs can be recovered in the presence of noise. Despite the inherent ambiguity (which we prove is unavoidable), the structure that can be recovered reveals local clustering information and global connectivity patterns in the underlying model. Such information is useful in a range of real-world problems, including power grids, social networks, protein-protein interactions, and neural structures. We then propose an algorithm which provably recovers the underlying graph up to the identified ambiguity. We further provide finite sample guarantees in the high-dimensional regime for our algorithm and validate our results through numerical simulations.
Related papers
- LSEnet: Lorentz Structural Entropy Neural Network for Deep Graph Clustering [59.89626219328127]
Graph clustering is a fundamental problem in machine learning.
Deep learning methods achieve the state-of-the-art results in recent years, but they still cannot work without predefined cluster numbers.
We propose to address this problem from a fresh perspective of graph information theory.
arXiv Detail & Related papers (2024-05-20T05:46:41Z) - Integer Programming for Learning Directed Acyclic Graphs from Non-identifiable Gaussian Models [6.54203362045253]
We study the problem of learning directed acyclic graphs from continuous observational data.
We develop a mixed-integer programming framework for learning medium-sized problems.
Our method outperforms state-of-the-art algorithms and is robust to noise heteroscedasticity.
arXiv Detail & Related papers (2024-04-19T02:42:13Z) - Latent Random Steps as Relaxations of Max-Cut, Min-Cut, and More [30.919536115917726]
We present a probabilistic model based on non-negative matrix factorization which unifies clustering and simplification.
By relaxing the hard clustering to a soft clustering, our algorithm relaxes potentially hard clustering problems to a tractable ones.
arXiv Detail & Related papers (2023-08-12T02:47:57Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - SCGG: A Deep Structure-Conditioned Graph Generative Model [9.046174529859524]
A conditional deep graph generation method called SCGG considers a particular type of structural conditions.
The architecture of SCGG consists of a graph representation learning network and an autoregressive generative model, which is trained end-to-end.
Experimental results on both synthetic and real-world datasets demonstrate the superiority of our method compared with state-of-the-art baselines.
arXiv Detail & Related papers (2022-09-20T12:33:50Z) - Semi-Supervised Clustering of Sparse Graphs: Crossing the
Information-Theoretic Threshold [3.6052935394000234]
Block model is a canonical random graph model for clustering and community detection on network-structured data.
No estimator based on the network topology can perform substantially better than chance on sparse graphs if the model parameter is below a certain threshold.
We prove that with an arbitrary fraction of the labels feasible throughout the parameter domain.
arXiv Detail & Related papers (2022-05-24T00:03:25Z) - Score matching enables causal discovery of nonlinear additive noise
models [63.93669924730725]
We show how to design a new generation of scalable causal discovery methods.
We propose a new efficient method for approximating the score's Jacobian, enabling to recover the causal graph.
arXiv Detail & Related papers (2022-03-08T21:34:46Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
Semi-supervised learning (SSL) over graph-structured data emerges in many network science applications.
To efficiently manage learning over graphs, variants of graph neural networks (GNNs) have been developed recently.
Despite their success in practice, most of existing methods are unable to handle graphs with uncertain nodal attributes.
Challenges also arise due to distributional uncertainties associated with data acquired by noisy measurements.
A distributionally robust learning framework is developed, where the objective is to train models that exhibit quantifiable robustness against perturbations.
arXiv Detail & Related papers (2021-10-20T14:23:54Z) - Efficient Bayesian network structure learning via local Markov boundary
search [17.1764265047364]
We analyze the complexity of learning directed acyclic graphical models from observational data without specific distributional assumptions.
We use a local Markov boundary search procedure in order to construct ancestral sets in the underlying graphical model.
Our approach is general, works for discrete or continuous distributions without distributional assumptions, and as such sheds light on the minimal assumptions required to efficiently learn the structure of directed graphical models from data.
arXiv Detail & Related papers (2021-10-12T15:33:59Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
We study the intrinsic difficulty in graph classification under the unified concept of resolution dilemmas''
We propose SLIM'', an inductive neural network model for Structural Landmarking and Interaction Modelling.
arXiv Detail & Related papers (2020-06-29T01:01:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.