SCGG: A Deep Structure-Conditioned Graph Generative Model
- URL: http://arxiv.org/abs/2209.09681v1
- Date: Tue, 20 Sep 2022 12:33:50 GMT
- Title: SCGG: A Deep Structure-Conditioned Graph Generative Model
- Authors: Faezeh Faez, Negin Hashemi Dijujin, Mahdieh Soleymani Baghshah, Hamid
R. Rabiee
- Abstract summary: A conditional deep graph generation method called SCGG considers a particular type of structural conditions.
The architecture of SCGG consists of a graph representation learning network and an autoregressive generative model, which is trained end-to-end.
Experimental results on both synthetic and real-world datasets demonstrate the superiority of our method compared with state-of-the-art baselines.
- Score: 9.046174529859524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based graph generation approaches have remarkable capacities
for graph data modeling, allowing them to solve a wide range of real-world
problems. Making these methods able to consider different conditions during the
generation procedure even increases their effectiveness by empowering them to
generate new graph samples that meet the desired criteria. This paper presents
a conditional deep graph generation method called SCGG that considers a
particular type of structural conditions. Specifically, our proposed SCGG model
takes an initial subgraph and autoregressively generates new nodes and their
corresponding edges on top of the given conditioning substructure. The
architecture of SCGG consists of a graph representation learning network and an
autoregressive generative model, which is trained end-to-end. Using this model,
we can address graph completion, a rampant and inherently difficult problem of
recovering missing nodes and their associated edges of partially observed
graphs. Experimental results on both synthetic and real-world datasets
demonstrate the superiority of our method compared with state-of-the-art
baselines.
Related papers
- GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - HiGen: Hierarchical Graph Generative Networks [2.3931689873603603]
Most real-world graphs exhibit a hierarchical structure, which is often overlooked by existing graph generation methods.
We propose a novel graph generative network that captures the hierarchical nature of graphs and successively generates the graph sub-structures in a coarse-to-fine fashion.
This modular approach enables scalable graph generation for large and complex graphs.
arXiv Detail & Related papers (2023-05-30T18:04:12Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures.
We propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process.
arXiv Detail & Related papers (2023-02-07T17:07:46Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Deep Manifold Learning with Graph Mining [80.84145791017968]
We propose a novel graph deep model with a non-gradient decision layer for graph mining.
The proposed model has achieved state-of-the-art performance compared to the current models.
arXiv Detail & Related papers (2022-07-18T04:34:08Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - CCGG: A Deep Autoregressive Model for Class-Conditional Graph Generation [7.37333913697359]
We introduce the Class Conditioned Graph Generator (CCGG) to generate graphs with desired features.
CCGG outperforms existing conditional graph generation methods on various datasets.
It also manages to maintain the quality of the generated graphs in terms of distribution-based evaluation metrics.
arXiv Detail & Related papers (2021-10-07T21:24:07Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.