Sketched Gaussian Model Linear Discriminant Analysis via the Randomized
Kaczmarz Method
- URL: http://arxiv.org/abs/2211.05749v1
- Date: Thu, 10 Nov 2022 18:29:36 GMT
- Title: Sketched Gaussian Model Linear Discriminant Analysis via the Randomized
Kaczmarz Method
- Authors: Jocelyn T. Chi and Deanna Needell
- Abstract summary: We present sketched linear discriminant analysis, an iterative randomized approach to binary-class Gaussian model linear discriminant analysis (LDA) for very large data.
We harness a least squares formulation and mobilize the descent gradient framework.
We present convergence guarantees for the sketched predictions on new data within a fixed number of iterations.
- Score: 7.593861427248019
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present sketched linear discriminant analysis, an iterative randomized
approach to binary-class Gaussian model linear discriminant analysis (LDA) for
very large data. We harness a least squares formulation and mobilize the
stochastic gradient descent framework. Therefore, we obtain a randomized
classifier with performance that is very comparable to that of full data LDA
while requiring access to only one row of the training data at a time. We
present convergence guarantees for the sketched predictions on new data within
a fixed number of iterations. These guarantees account for both the Gaussian
modeling assumptions on the data and algorithmic randomness from the sketching
procedure. Finally, we demonstrate performance with varying step-sizes and
numbers of iterations. Our numerical experiments demonstrate that sketched LDA
can offer a very viable alternative to full data LDA when the data may be too
large for full data analysis.
Related papers
- Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
We show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU.
As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty.
arXiv Detail & Related papers (2024-11-01T21:11:48Z) - Inference in Randomized Least Squares and PCA via Normality of Quadratic Forms [19.616162116973637]
We develop a unified methodology for statistical inference via randomized sketching or projections.
The methodology applies to fixed datasets -- i.e., is data-conditional -- and the only randomness is due to the randomized algorithm.
arXiv Detail & Related papers (2024-04-01T04:35:44Z) - Minimally Informed Linear Discriminant Analysis: training an LDA model
with unlabelled data [51.673443581397954]
We show that it is possible to compute the exact projection vector from LDA models based on unlabelled data.
We show that the MILDA projection vector can be computed in a closed form with a computational cost comparable to LDA.
arXiv Detail & Related papers (2023-10-17T09:50:31Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - Algorithmic Gaussianization through Sketching: Converting Data into
Sub-gaussian Random Designs [22.925108493465363]
We provide an algorithmic framework for gaussianizing data distributions via averaging.
We show that it is possible to efficiently construct data sketches that are nearly indistinguishable from sub-gaussian random designs.
arXiv Detail & Related papers (2022-06-21T12:16:45Z) - Probabilistic Registration for Gaussian Process 3D shape modelling in
the presence of extensive missing data [63.8376359764052]
We propose a shape fitting/registration method based on a Gaussian Processes formulation, suitable for shapes with extensive regions of missing data.
Experiments are conducted both for a 2D small dataset with diverse transformations and a 3D dataset of ears.
arXiv Detail & Related papers (2022-03-26T16:48:27Z) - Adaptive Cholesky Gaussian Processes [7.684183064816171]
We present a method to fit exact Gaussian process models to large datasets by considering only a subset of the data.
Our approach is novel in that the size of the subset is selected on the fly during exact inference with little computational overhead.
arXiv Detail & Related papers (2022-02-22T09:43:46Z) - Least Squares Regression with Markovian Data: Fundamental Limits and
Algorithms [69.45237691598774]
We study the problem of least squares linear regression where the data-points are dependent and are sampled from a Markov chain.
We establish sharp information theoretic minimax lower bounds for this problem in terms of $tau_mathsfmix$.
We propose an algorithm based on experience replay--a popular reinforcement learning technique--that achieves a significantly better error rate.
arXiv Detail & Related papers (2020-06-16T04:26:50Z) - Semi-analytic approximate stability selection for correlated data in
generalized linear models [3.42658286826597]
We propose a novel approximate inference algorithm that can conduct Stability Selection without the repeated fitting.
The algorithm is based on the replica method of statistical mechanics and vector approximate message passing of information theory.
Numerical experiments indicate that the algorithm exhibits fast convergence and high approximation accuracy for both synthetic and real-world data.
arXiv Detail & Related papers (2020-03-19T10:43:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.