Inference in Randomized Least Squares and PCA via Normality of Quadratic Forms
- URL: http://arxiv.org/abs/2404.00912v1
- Date: Mon, 1 Apr 2024 04:35:44 GMT
- Title: Inference in Randomized Least Squares and PCA via Normality of Quadratic Forms
- Authors: Leda Wang, Zhixiang Zhang, Edgar Dobriban,
- Abstract summary: We develop a unified methodology for statistical inference via randomized sketching or projections.
The methodology applies to fixed datasets -- i.e., is data-conditional -- and the only randomness is due to the randomized algorithm.
- Score: 19.616162116973637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Randomized algorithms can be used to speed up the analysis of large datasets. In this paper, we develop a unified methodology for statistical inference via randomized sketching or projections in two of the most fundamental problems in multivariate statistical analysis: least squares and PCA. The methodology applies to fixed datasets -- i.e., is data-conditional -- and the only randomness is due to the randomized algorithm. We propose statistical inference methods for a broad range of sketching distributions, such as the subsampled randomized Hadamard transform (SRHT), Sparse Sign Embeddings (SSE) and CountSketch, sketching matrices with i.i.d. entries, and uniform subsampling. To our knowledge, no comparable methods are available for SSE and for SRHT in PCA. Our novel theoretical approach rests on showing the asymptotic normality of certain quadratic forms. As a contribution of broader interest, we show central limit theorems for quadratic forms of the SRHT, relying on a novel proof via a dyadic expansion that leverages the recursive structure of the Hadamard transform. Numerical experiments using both synthetic and empirical datasets support the efficacy of our methods, and in particular suggest that sketching methods can have better computation-estimation tradeoffs than recently proposed optimal subsampling methods.
Related papers
- Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Near-optimal estimation of smooth transport maps with kernel
sums-of-squares [81.02564078640275]
Under smoothness conditions, the squared Wasserstein distance between two distributions could be efficiently computed with appealing statistical error upper bounds.
The object of interest for applications such as generative modeling is the underlying optimal transport map.
We propose the first tractable algorithm for which the statistical $L2$ error on the maps nearly matches the existing minimax lower-bounds for smooth map estimation.
arXiv Detail & Related papers (2021-12-03T13:45:36Z) - Fast and Robust Online Inference with Stochastic Gradient Descent via
Random Scaling [0.9806910643086042]
We develop a new method of online inference for a vector of parameters estimated by the Polyak-Rtupper averaging procedure of gradient descent algorithms.
Our approach is fully operational with online data and is rigorously underpinned by a functional central limit theorem.
arXiv Detail & Related papers (2021-06-06T15:38:37Z) - Projected Statistical Methods for Distributional Data on the Real Line
with the Wasserstein Metric [0.0]
We present a novel class of projected methods, to perform statistical analysis on a data set of probability distributions on the real line.
We focus in particular on Principal Component Analysis (PCA) and regression.
Several theoretical properties of the models are investigated and consistency is proven.
arXiv Detail & Related papers (2021-01-22T10:24:49Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z) - Bayesian System ID: Optimal management of parameter, model, and
measurement uncertainty [0.0]
We evaluate the robustness of a probabilistic formulation of system identification (ID) to sparse, noisy, and indirect data.
We show that the log posterior has improved geometric properties compared with the objective function surfaces of traditional methods.
arXiv Detail & Related papers (2020-03-04T22:48:30Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
We consider distributed optimization problems where forming the Hessian is computationally challenging and communication is a bottleneck.
We develop unbiased parameter averaging methods for randomized second order optimization that employ sampling and sketching of the Hessian.
We also extend the framework of second order averaging methods to introduce an unbiased distributed optimization framework for heterogeneous computing systems.
arXiv Detail & Related papers (2020-02-16T09:01:18Z) - Statistical Outlier Identification in Multi-robot Visual SLAM using
Expectation Maximization [18.259478519717426]
This paper introduces a novel and distributed method for detecting inter-map loop closure outliers in simultaneous localization and mapping (SLAM)
The proposed algorithm does not rely on a good initialization and can handle more than two maps at a time.
arXiv Detail & Related papers (2020-02-07T06:34:44Z) - Optimal Iterative Sketching with the Subsampled Randomized Hadamard
Transform [64.90148466525754]
We study the performance of iterative sketching for least-squares problems.
We show that the convergence rate for Haar and randomized Hadamard matrices are identical, andally improve upon random projections.
These techniques may be applied to other algorithms that employ randomized dimension reduction.
arXiv Detail & Related papers (2020-02-03T16:17:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.